Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites

De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., et al. (2013). Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology, 19(6), 1759-1779. doi:10.1111/gcb.12164.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC1815.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
BGC1815.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
De Kauwe , Martin G., Autor
Medlyn, Belinda E., Autor
Zaehle, Sönke1, 2, Autor           
Walker, Anthony P., Autor
Dietze, Michael C., Autor
Hickler, Thomas, Autor
Jain, Atul K., Autor
Luo, Yiqi, Autor
Parton, William J., Autor
Prentice, I. Colin, Autor
Smith, Benjamin, Autor
Thornton, Peter E., Autor
Wang, Shusen, Autor
Wang, Ying-Ping, Autor
Warlind, David, Autor
Weng, Ensheng, Autor
Crous, Kristine Y., Autor
Ellsworth, David S., Autor
Hanson , Paul J., Autor
Kim, Hyun-Seok, Autor
Warren, Jeffrey M., AutorOren, Ram, AutorNorby, Richard J., Autor mehr..
Affiliations:
1Terrestrial Biosphere Modelling & Data assimilation, Dr. S. Zähle, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497787              
2Terrestrial Biosphere Modelling , Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938309              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Predicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process-based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free-air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model-to-model and model-to-observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 2–15%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel l = approximately 28% 10%) compared to the observations (l = approximately 30% 13%) at the well-coupled coniferous site (Duke), but poor (intermodel l = approximately 24% 6%; observations l = approximately 38% 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2013-01-302013-03-25
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BGC1815
DOI: 10.1111/gcb.12164
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Global Change Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford, UK : Blackwell Science
Seiten: - Band / Heft: 19 (6) Artikelnummer: - Start- / Endseite: 1759 - 1779 Identifikator: ISSN: 1354-1013
CoNE: https://pure.mpg.de/cone/journals/resource/954925618107