English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ontogenetic differences of herbivory on woody and herbaceous plants: a meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast

Massad, T. (2012). Ontogenetic differences of herbivory on woody and herbaceous plants: a meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia, 172, 1-10. doi:10.1007/s00442-012-2470-1.

Item is

Files

show Files
hide Files
:
BGC1811.pdf (Publisher version), 317KB
 
File Permalink:
-
Name:
BGC1811.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Massad, Tara1, Author           
Affiliations:
1Impact of Fire on Plant Diversity in the Amazon Forest, Dr. T. Massad, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497782              

Content

show
hide
Free keywords: -
 Abstract: The effect of herbivory on plant performance is the subject of a large number of ecological studies, and plant responses to herbivory range from reduced reproduction to overcompensation. Because plant defenses, stored resources, and allocation demands change throughout a plant’s lifetime, it can be hypothesized the effects of herbivory also vary with development. The present work extends previous analyses to incorporate hundreds of studies in a new meta-analysis addressing this topic. Herbivores had an overall negative effect on plant growth and reproduction, and, in contrast to a previous meta-analysis, this work shows the timing of herbivory is relevant. Differences in the effects of herbivory between life stages existed for woody plant reproduction and perennial herb growth. In addition, tree and shrub growth was reduced by herbivore damage at early ontogenetic stages, and perennial herb reproduction was limited by adult stage herbivory. These results partially support the continuum of an ontogenetic response model. Finally, consideration of this synthesis in conjunction with other work led to the conclusion that different plant groups optimize their defense investments in unique ways. Slow-growing plants may strongly chemically defend young tissues, supporting the plant–age hypothesis, because early herbivory is detrimental to growth. Faster-growing herbs may invest more in antiherbivore defense when they are older, supporting the growth–differentiation balance hypothesis, because later herbivory limits their reproduction.

Details

show
hide
Language(s):
 Dates: 2012-09-052012-10-04
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC1811
DOI: 10.1007/s00442-012-2470-1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Oecologia
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin : Springer-Verlag.
Pages: - Volume / Issue: 172 Sequence Number: - Start / End Page: 1 - 10 Identifier: ISSN: 0029-8549
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000265440