Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Stochastic Population Balance Modeling of Influenza Virus Replication in Vaccine Production Processes

Sidorenko, Y., Schulze-Horsel, J., Voigt, A., Reichl, U., & Kienle, A. (2008). Stochastic Population Balance Modeling of Influenza Virus Replication in Vaccine Production Processes. Chemical Engineering Science, 63, 157-169. doi:10.1016/j.ces.2007.09.014.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sidorenko, Y.1, Autor           
Schulze-Horsel, J.1, Autor           
Voigt, A.2, 3, Autor           
Reichl, U.1, 3, Autor           
Kienle, A.3, 4, Autor           
Affiliations:
1Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738140              
2Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
3Otto-von-Guericke-Universität Magdeburg, ou_1738156              
4Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738153              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A distributed population balance model of influenza A virus replication in adherent Madin-Darby canine kidney cells has been developed to reproduce and interpret flow cytometry data for virus propagation in microcarrier culture. The population of cells is differentiated into uninfected, infected and degraded cells. As an internal coordinate the number of intracellular viral components is considered. The main focus of the model is to link the time course of intracellular virus protein accumulation monitored by flow cytometry with the total yield of virus particles measured by the hemagglutination assay. The model allows simulating the extracellular virus dynamics for multiplicities of infection in the range 0.025 to 3.0. Shape of predicted histograms is in general agreement with distributions obtained by flow cytometry. Differences in time course at about 12 to 14 h and 20 h post infection indicate that additional assumptions on intracellular virus dynamics are required to fully explain experimental data. Furthermore, prerequisites for virus replication, like receptor binding sites, the number of endosomes or the demand for free amino acids and nucleotides for virus synthesis can be estimated and compared with cellular resources available. Simulation results suggest that intracellular pools of free amino acids as well as early cell death due to influenza virus-induced apoptosis can limit virus yields. It is expected that based on a better understanding of the infectivity status of cells and the spreading of viruses in population of cells in bioreactors strategies on design and optimization of vaccine production processes can be developed. Copyright © 2007 Elsevier Ltd All rights reserved. [accessed June 6, 2008]

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2008
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: eDoc: 322604
Anderer: 1/08
DOI: 10.1016/j.ces.2007.09.014
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chemical Engineering Science
  Andere : Chem. Eng. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Pergamon
Seiten: - Band / Heft: 63 Artikelnummer: - Start- / Endseite: 157 - 169 Identifikator: ISSN: 0009-2509
CoNE: https://pure.mpg.de/cone/journals/resource/954925389239