English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Large-Scale Simulation of Flow and Transport in Reconstructed HPLC-Microchip Packings

Khirevich, S., Höltzel, A., Ehlert, S., Seidel-Morgenstern, A., & Tallarek, U. (2009). Large-Scale Simulation of Flow and Transport in Reconstructed HPLC-Microchip Packings. Analytical Chemistry, 81(12), 4937-4945. doi:10.1021/ac900631d.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Khirevich, S.1, Author
Höltzel, A.1, Author
Ehlert, S.1, Author
Seidel-Morgenstern, A.2, 3, Author           
Tallarek, U.1, Author
Affiliations:
1Philipps-Universität Marburg, Department of Chemistry, Marburg, Germany, ou_persistent22              
2Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              
3Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show
hide
Free keywords: -
 Abstract: Flow and transport in a particle-packed microchip separation channel were investigated with quantitative numerical analysis methods, comprising the generation of confined, polydisperse sphere packings by a modified Jodrey−Tory algorithm, 3D velocity field calculations by the lattice−Boltzmann method, and modeling of convective−diffusive mass transport with a random-walk particle-tracking approach. For the simulations, the exact conduit cross section, the particle-size distribution of the packing material, and the respective average interparticle porosity (packing density) of the HPLC-microchip packings was reconstructed. Large-scale simulation of flow and transport at Péclet numbers of up to Pe = 140 in the reconstructed microchip packings (containing more than 3 × 105 spheres) was facilitated by the efficient use of supercomputer power. Porosity distributions and fluid flow velocity profiles for the reconstructed microchip packings are presented and analyzed. Aberrations from regular geometrical conduit shape are shown to influence packing structure and, thus, porosity and velocity distributions. Simulated axial dispersion coefficients are discussed with respect to their dependence on flow velocity and bed porosity. It is shown by comparison to experimental separation efficiencies that the simulated data genuinely reflect the general dispersion behavior of the real-life HPLC-microchip packings. Differences between experiment and simulation are explained by differing morphologies of real and simulated packings (intraparticle porosity, packing structure in the corner regions). Copyright © 2009 American Chemical Society [accessed July 28, 2009]

Details

show
hide
Language(s): eng - English
 Dates: 2009
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 433491
DOI: 10.1021/ac900631d
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Analytical Chemistry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 81 (12) Sequence Number: - Start / End Page: 4937 - 4945 Identifier: ISSN: 0003-2700
CoNE: https://pure.mpg.de/cone/journals/resource/111032812862552