English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The formation of wider and deeper clouds as a result of cold-pool dynamics

Schlemmer, L., & Hohenegger, C. (2014). The formation of wider and deeper clouds as a result of cold-pool dynamics. Journal of the Atmospheric Sciences, 71, 2842-2858. doi:10.1175/JAS-D-13-0170.1.

Item is

Files

show Files
hide Files
:
jas-d-13-0170.1.pdf (Publisher version), 3MB
Name:
jas-d-13-0170.1.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Schlemmer, Linda1, Author
Hohenegger, Cathy1, Author           
Affiliations:
1Hans Ertel Research Group Clouds and Convection, ou_913572              

Content

show
hide
Free keywords: -
 Abstract: This study investigates how precipitation-driven cold pools aid the formation of wider clouds that are essential for a transition from shallow to deep convection. In connection with a temperature depression and a depletion of moisture inside developing cold pools, an accumulation of moisture in moist patches around the cold pools is observed. Convective clouds are formed on top of these moist patches. Larger moist patches form with time supporting more and larger clouds. Moreover, enhanced vertical lifting along the leading edges of the gravity current triggered by the cold pool is found. The interplay of moisture aggregation and lifting eventually promotes the formation of wider clouds that are less affected by entrainment and become deeper. These mechanisms are corroborated in a series of cloud-resolving model simulations representing different atmospheric environments. A positive feedback is observed in that in an atmosphere where cloud and rain formation is facilitated, stronger downdrafts will form. These stronger downdrafts lead to a stronger modification of the moisture field which in turn favour further cloud development. This effect is not only observed in the transition phase but is also active in prolonging the peak-time of precipitation in the later stages of the diurnal cycle. These findings are used to propose a simple way for incorporating the effect of cold pools on cloud sizes and thereby entrainment rate into parametrization schemes for convection. Comparison of this parameterization to the cloud-resolving modeling output gives promising results.

Details

show
hide
Language(s): eng - English
 Dates: 2013-052014-0520142014-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1175/JAS-D-13-0170.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the Atmospheric Sciences
  Abbreviation : J. Atmos. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Meteorological Society
Pages: - Volume / Issue: 71 Sequence Number: - Start / End Page: 2842 - 2858 Identifier: ISSN: 0022-4928
CoNE: https://pure.mpg.de/cone/journals/resource/954925418030