de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

 
 
 
 
DownloadE-Mail
  A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP

Nere, A., Olcese U, Balduzzi, D., & Tononi, G. (2012). A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP. PLoS ONE, 7(5): e36958. doi:10.1371/journal.pone.0036958.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-000E-FDA9-9 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-000E-FDAB-5
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Nere, A, Autor
Olcese U, Balduzzi, D1, Autor              
Tononi, G, Autor
Affiliations:
1Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, escidoc:1497647              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Abt. Schölkopf
 Zusammenfassung: In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2012-05
 Publikationsstatus: Im Druck publiziert
 Seiten: 17 pages
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pone.0036958
BibTex Citekey: NereOBT2012
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS ONE
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 7 (5) Artikelnummer: e36958 Start- / Endseite: - Identifikator: -