Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Impact of Vibrational Entropy on the Stability of Unsolvated Peptide Helices with Increasing Length

Rossi, M., Scheffler, M., & Blum, V. (2013). Impact of Vibrational Entropy on the Stability of Unsolvated Peptide Helices with Increasing Length. The Journal of Physical Chemistry B, 117(18), 5574-5584. doi:10.1021/jp402087e.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
rossi_jz101394u.pdf (beliebiger Volltext), 2MB
 
Datei-Permalink:
-
Name:
rossi_jz101394u.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
2013
Copyright Info:
ACS
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rossi, Mariana1, Autor           
Scheffler, Matthias1, Autor           
Blum, Volker1, Autor           
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: polyalanine; vibrational entropy; density-functional theory; helix stability crossover; secondary structure
 Zusammenfassung: Helices are a key folding motif in protein structure. The question of which factors determine helix stability for a given polypeptide or protein is an ongoing challenge. Here we use van-der-Waals-corrected density functional theory to address a part of this question in a bottom-up approach. We show how intrinsic helical structure is stabilized with length and temperature for a series of experimentally well-studied unsolvated alanine-based polypeptides, Ac-Alan -LysH+. By exhaustively exploring the conformational space of these molecules, we find that helices emerge as the preferred structure in the length range n = 4–8 not just due to enthalpic factors (hydrogen bonds and their cooperativity, van der Waals dispersion interactions, electrostatics) but importantly also by a vibrational entropic stabilization over competing conformers at room temperature. The stabilization is shown to be due to softer low-frequency vibrational modes in helical conformers than in more compact ones. This observation is corroborated by including anharmonic effects explicitly through ab initio molecular dynamics and generalized by testing different terminations and considering larger helical peptide models.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-04-082013-02-282013-04-092013-04-092013
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/jp402087e
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Physical Chemistry B
  Andere : J. Phys. Chem. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 117 (18) Artikelnummer: - Start- / Endseite: 5574 - 5584 Identifikator: ISSN: 1520-6106
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000293370_1