English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Machine Learning of Molecular Electronic Properties in Chemical Compound Space

Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A., Hansen, K., Tkatchenko, A., et al. (2013). Machine Learning of Molecular Electronic Properties in Chemical Compound Space. New Journal of Physics, 15(9): 095003. doi:10.1088/1367-2630/15/9/095003.

Item is

Files

show Files
hide Files
:
1367-2630_15_9_095003.pdf (Publisher version), 7MB
Name:
1367-2630_15_9_095003.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2013
Copyright Info:
Institute of Physics Pub.

Locators

show

Creators

show
hide
 Creators:
Montavon, Grégoire1, Author
Rupp, Matthias2, Author
Gobre, Vivekanand3, Author           
Vazquez-Mayagoitia, Alvaro4, Author
Hansen, Katja3, Author           
Tkatchenko, Alexandre3, 5, Author           
Müller, Klaus-Robert1, 6, Author
von Lilienfeld, O. Anatole4, Author
Affiliations:
1Machine Learning Group, Technical University of Berlin, Franklinstr 28/29, 10587 Berlin, Germany, ou_persistent22              
2Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Z¨urich, Switzerland, ou_persistent22              
3Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
4Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA, ou_persistent22              
5Department of Chemistry, Pohang University of Science and Technology, Pohang 790–784, Korea, ou_persistent22              
6Department of Brain and Cognitive Engineering, Korea University,, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel, and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning (ML) model, trained on a data base of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. The ML model is based on a deep multi-task artificial neural network, exploiting underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules the accuracy of such a “Quantum Machine” is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

Details

show
hide
Language(s): eng - English
 Dates: 2013-01-0820132013-09-04
 Publication Status: Published online
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1088/1367-2630/15/9/095003
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: New Journal of Physics
  Other : New J. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bristol, UK : Institute of Physics Pub.
Pages: - Volume / Issue: 15 (9) Sequence Number: 095003 Start / End Page: - Identifier: ISSN: 1367-2630
CoNE: https://pure.mpg.de/cone/journals/resource/954926913666