English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils

Schmidt, M. W. I., Rumpel, C., & Kögel-Knabner, I. (1999). Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils. European Journal of Soil Science, 50(1), 87-94.

Item is

Files

show Files
hide Files
:
BGC0181.pdf (Publisher version), 273KB
 
File Permalink:
-
Name:
BGC0181.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Schmidt, M. W. I.1, Author           
Rumpel, C., Author
Kögel-Knabner, I., Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: Particle-size fractions Organic-matter Nitrogen Carbon Nmr Energy
 Abstract: Soil organic matter can be intimately associated with mineral particles of various sizes. For structural studies, soil organic matter can be isolated in particle size fractions after complete dispersion of the aggregates by ultrasonication. The ultrasonic dispersion energy necessary for complete dispersion was investigated in three A and two B horizons originating from four soils differing in pedogenesis (Gleysol, Phaeozem, Podzol, Alisol), organic C (4.2-34.5 g kg(-1)) and clay content (24-294 g kg(-1)). Calorimetric calibration of five probe-type ultrasonifiers revealed that the actual energy output from an instrument can depart widely from its nominal output, and that this discrepancy varies from instrument to instrument. Calorimetric calibration is therefore essential for consistency and comparisons between laboratories. Between 450 and 500 J ml(-1) of ultrasonic dispersion energy was enough to disperse completely all samples investigated. The particle size distributions obtained were close to those from standard analysis, except for smaller yields (-20 to -80 g kg(-1)) of sand size fractions, which suggests that dispersion by ultrasound is more effective. Based on total C, C:N ratio and distribution of dissolved C, no detachment of soil organic matter from primary organomineral complexes and no redistribution between particle size fractions could be detected in the range 30-590 J ml(-1) of dispersion energy. [References: 25]

Details

show
hide
Language(s):
 Dates: 1999
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0181
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: European Journal of Soil Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford, England : Blackwell Science
Pages: - Volume / Issue: 50 (1) Sequence Number: - Start / End Page: 87 - 94 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954928495411
ISSN: 1351-0754