English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  CO2 concentration profiles, and carbon and oxygen isotopes in C3, and C4 crop canopies

Buchmann, N., & Ehleringer, J. R. (1998). CO2 concentration profiles, and carbon and oxygen isotopes in C3, and C4 crop canopies. Agricultural and Forest Meteorology, 89(1), 45-58.

Item is

Files

show Files
hide Files
:
BGC0041.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC0041.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Buchmann, N.1, Author           
Ehleringer, J. R., Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: CO2; delta C-13; delta O-18; carbon discrimination; alfalfa; corn; land use; soil carbon; isotopic disequilibrium Soil organic-matter; natural c-13 abundance; atmospheric CO2; forest soils; dioxide; vegetation; turnover; discrimination; photosynthesis; assimilation
 Abstract: CO2 concentrations ([CO2]), as well as carbon and oxygen isotope ratios (delta(13)C, delta(18)O) were measured within alfalfa (C-3) and corn (C-4) crop canopies (leaf area indices of 4.6 and 2.5, respectively). Daily fluctuations were observed within the canopy and extended into the canopy boundary layer (at heights 2 to 3 times higher than the maximum plant height). Photosynthetic demand for canopy CO2 exceeded soil respiration to such an extent that daytime [CO2] values were depleted 15 to 50 ppm below tropospheric values; delta(13)C values of canopy air reached a maximum of 3 parts per thousand heavier than the tropospheric baseline values. Highly significant relationships were observed between delta(13)C and delta(18)O ratios of canopy air in both crop canopies. Leaf carbon isotope discrimination was significantly different between species, 20 parts per thousand (alfalfa) vs. 4 parts per thousand (corn). However, the relationships between 1/[CO2] and delta(13)C, as well as 1/[CO2] and delta(18)O of canopy air did not differ between the two crop species. Thus, ecosystem respiration had an average delta(13)C ratio of -21.6 parts per thousand and a delta(18)O ratio of 29 parts per thousand. The delta(13)C values of soil-respired CO2 were similar in both C-3 and C-4 crop stands (approximately -22.6 parts per thousand). Ecosystem-level carbon isotope discrimination (Delta(e)) estimates were indistinguishable between both crops (13.8 parts per thousand for alfalfa, and 13.2 parts per thousand for corn). Thus, the Delta(e) estimates, as well as the delta(13)C values of soil organic carbon and soil-respired CO2 integrate C-13 contributions from the current standing plant cover, as well as from crops of previous years in this crop rotation system. Furthermore, this study clearly indicated that the carbon isotope ratios of carbon fixed and carbon released were not near the equilibrium values expected for the current crop at each site. The implications of this isotopic disequilibrium of a crop rotation agricultural system are discussed with respect to scaling canopy-level observations to global models for identifying C sinks. (C) 1998 Elsevier Science B.V.

Details

show
hide
Language(s): eng - English
 Dates: 1998
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0041
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Agricultural and Forest Meteorology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 89 (1) Sequence Number: - Start / End Page: 45 - 58 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954928468040
ISSN: 0168-1923