English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Simultaneous determination of the quantity and isotopic signature of dissolved organic matter from soil water using high-performance liquid chromatography/isotope ratio mass spectrometry

Scheibe, A., Krantz, L., & Gleixner, G. (2012). Simultaneous determination of the quantity and isotopic signature of dissolved organic matter from soil water using high-performance liquid chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 26(2), 173-180. doi:10.1002/rcm.5311.

Item is

Files

show Files
hide Files
:
BGC1633.pdf (Publisher version), 990KB
 
File Permalink:
-
Name:
BGC1633.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Scheibe, Andrea1, Author           
Krantz, Lars1, Author           
Gleixner, Gerd1, Author           
Affiliations:
1Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497775              

Content

show
hide
Free keywords: terrestrial ecosystems carbon isotopes c-13 analysis delta-c-13 dynamics analyzer nitrogen forest stream sugars
 Abstract: We assessed the accuracy and utility of a modified high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) system for measuring the amount and stable carbon isotope signature of dissolved organic matter (DOM) < 1 mu m. Using a range of standard compounds as well as soil solutions sampled in the field, we compared the results of the HPLC/IRMS analysis with those from other methods for determining carbon and C-13 content. The conversion efficiency of the in-line wet oxidation of the HPLC/IRMS averaged 99.3 % for a range of standard compounds. The agreement between HPLC/IRMS and other methods in the amount and isotopic signature of both standard compounds and soil water samples was excellent. For DOM concentrations below 10 mg C L-1 (250 ng C total) pre-concentration or large volume injections are recommended in order to prevent background interferences. We were able to detect large differences in the C-13 signatures of soil solution DOM sampled in 10 cm depth of plots with either C3 or C4 vegetation and in two different parent materials. These measurements also demonstrated changes in the C-13 signature that demonstrate rapid loss of plant-derived C with depth. Overall the modified HLPC/IRMS system has the advantages of rapid sample preparation, small required sample volume and high sample throughput, while showing comparable performance with other methods for measuring the amount and isotopic signature of DOM. Copyright (C) 2011 John Wiley & Sons, Ltd.

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/rcm.5311
ISI: ://WOS:000299738500009
Other: BGC1633
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Rapid Communications in Mass Spectrometry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : John Wiley & Sons
Pages: - Volume / Issue: 26 (2) Sequence Number: - Start / End Page: 173 - 180 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925574961
ISSN: 0951-4198