English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Coordination of physiological and structural traits in Amazon forest trees

Patiño, S., Fyllas, N. M., Baker, T. R., Paiva, R., Quesada, C. A., Santos, A. J. B., et al. (2012). Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences, 9(2), 775-801. doi:10.5194/bg-9-775-2012.

Item is

Files

show Files
hide Files
:
BGC1640.pdf (Publisher version), 4MB
Name:
BGC1640.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/bg-9-775-2012 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Patiño, S.1, Author           
Fyllas, N. M., Author
Baker, T. R., Author
Paiva, R., Author
Quesada, C. A., Author
Santos, A. J. B., Author
Schwarz, M., Author
Ter Steege, H., Author
Phillips, O. L., Author
Lloyd, J., Author
Affiliations:
1Research Group Carbon-Change Atmosphere, Dr. J. Lloyd, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497762              

Content

show
hide
Free keywords: tropical rain-forest carbon-isotope discrimination life-history variation leaf photosynthetic capacity branch xylem density wood density neotropical forests seed size water relations dry mass
 Abstract: Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (Phi(LS)) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (H-max), seed size, leaf mass per unit area (M-A), foliar nutrients and delta C-13, and branch xylem density (rho(x)). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and M-A and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher Phi(LS) newly identified components for tropical tree species. The third relates primarily to increasing H-max and hence variations in light acquisition strategy involving greater M-A, reductions in Phi(LS) and less negative delta C-13. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with rho(x) of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and Phi(LS) were less responsive to the environment than rho(x). Thus, although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics such as maximum height, others such as the classical "leaf economic spectrum" covary with structural traits such as leaf size and Phi(LS). Coordinated structural and physiological adaptions are also associated with light acquisition/shade tolerance strategies with several traits such as M-A and [C] being significant components of more than one ecological strategy dimension. This is argued to be a consequence of a range of different potential underlying causes for any observed variation in such "ambiguous" traits. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/bg-9-775-2012
ISI: ://WOS:000300877400012
Other: BGC1640
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biogeosciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Pages: - Volume / Issue: 9 (2) Sequence Number: - Start / End Page: 775 - 801 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006
ISSN: 1726-4170