English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Interactions in tropical reforestation - how plant defence and polycultures can reduce growth-limiting herbivory

Massad, T. J. (2012). Interactions in tropical reforestation - how plant defence and polycultures can reduce growth-limiting herbivory. Applied Vegetation Science, 15(3), 338-348. doi:10.1111/j.1654-109X.2012.01185.x.

Item is

Files

show Files
hide Files
:
BGC1683.pdf (Publisher version), 305KB
 
File Permalink:
-
Name:
BGC1683.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Massad, T. J.1, Author           
Affiliations:
1Impact of Fire on Plant Diversity in the Amazon Forest, Dr. T. Massad, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497782              

Content

show
hide
Free keywords: Atta cephalotes Growth Herbivore Leaf toughness Plant defence Polyculture Restoration Saponins cephalotes l hymenoptera tree species-diversity leaf-cutting ants rain-forest trees costa-rica atta-cephalotes associational susceptibility abandoned pasture plantations selection
 Abstract: Questions Can the growth of saplings be improved by limiting herbivory during reforestation? Can chemical ecology and diverse planting designs be applied to decrease herbivory in tropical reforestation? Location Reforestation plantings in Heredia, Costa Rica. Methods This study directly evaluates the effects of herbivory on seedling growth and the role of two putative plant defences, saponins and leaf toughness, in limiting herbivory in reforestation. Four planting treatments were studied in a replicated block design in cattle pastures in Costa Rica: (1) a monoculture of a fast-growing species low in saponins (Dipteryx panamensis); (2) a monoculture of a slower-growing, saponin-rich species (Cojoba arborea); (3) a polyculture consisting of half D. panamensis and half three other defended species; and (4) a polyculture of half C. arborea and half the same other defended species. Growth and herbivory were measured every 6 mo during the first 2 yr of plot development and again after 5 yr of growth. Results Dipteryx panamensis was the fastest-growing species, and individuals planted in polycultures grew faster in terms of height than individuals in monoculture. Herbivory was negatively related to sapling growth, and damage during the first 6 mo of plot establishment decreased growth even after 5 yr. Patterns of herbivory varied through time, resulting in changes in the importance of plant defences. For example, leaf toughness, which is an effective defence against many herbivores, was negatively related to herbivory at multiple time periods. In contrast, saponins were not a deterrent to all herbivores, so they were not consistently effective as a defence; however saponins were negatively related to Atta cephalotes (leaf-cutter ant) damage. Saponins are therefore a promising defence against leaf-cutter ants but not against all herbivores. Conclusions Plantinsect interactions influence reforestation through growth-limiting herbivore pressure on seedlings, and this herbivory is likely facilitated by reforestation methods that favour monocultures of fast-growing species that lack strong antiherbivore defences. This study demonstrates the potential for reducing herbivory and improving sapling growth by reforesting with polycultures of fast-growing and well-defended species.

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1111/j.1654-109X.2012.01185.x
ISI: ://WOS:000305936800005
Other: BGC1683
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied Vegetation Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Uppsala : Opulus Press
Pages: - Volume / Issue: 15 (3) Sequence Number: - Start / End Page: 338 - 348 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/110978984352353
ISSN: 1402-2001