English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Warming accelerates decomposition of decades-old carbon in forest soils

Hopkins, F. M., Torn, M. S., & Trumbore, S. E. (2012). Warming accelerates decomposition of decades-old carbon in forest soils. Proceedings of the National Academy of Sciences of the United States of America, 109(26), E1753-E1761. doi:10.1073/pnas.1120603109.

Item is

Files

show Files
hide Files
:
BGC1670.pdf (Publisher version), 924KB
 
File Permalink:
-
Name:
BGC1670.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC1670S.pdf (Supplementary material), 325KB
 
File Permalink:
-
Name:
BGC1670S.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Hopkins, Francesca M., Author
Torn, Margaret S., Author
Trumbore, Susan E.1, Author           
Affiliations:
1Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497752              

Content

show
hide
Free keywords: -
 Abstract: Global climate carbon-cycle models predict acceleration of soil organic carbon losses to the atmosphere with warming, but the size of this feedback is poorly known. The temperature sensitivity of soil carbon decomposition is commonly determined by measuring changes in the rate of carbon dioxide (CO2) production under controlled laboratory conditions. We added measurements of carbon isotopes in respired CO2 to constrain the age of carbon substrates contributing to the temperature response of decomposition for surface soils from two temperate forest sites with very different overall rates of carbon cycling. Roughly one-third of the carbon respired at any temperature was fixed from the atmosphere more than 10 y ago, and the mean age of respired carbon reflected a mixture of substrates of varying ages. Consistent with global ecosystem model predictions, the temperature sensitivity of the carbon fixed more than a decade ago was the same as the temperature sensitivity for carbon fixed less than 10 y ago. However, we also observed an overall increase in the mean age of carbon respired at higher temperatures, even correcting for potential substrate limitation effects. The combination of several age constraints from carbon isotopes showed that warming had a similar effect on respiration of decades-old and younger (<10 y) carbon but a greater effect on decomposition of substrates of intermediate (between 7 and 13 y) age. Our results highlight the vulnerability of soil carbon to warming that is years-to-decades old, which makes up a large fraction of total soil carbon in forest soils globally.

Details

show
hide
Language(s):
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1073/pnas.1120603109
Other: BGC1670
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: National Academy of Sciences
Pages: - Volume / Issue: 109 (26) Sequence Number: - Start / End Page: E1753 - E1761 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230