Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Improving the predictability of global CO2 assimilation rates under climate change

Ziehn, T., Kattge, J., Knorr, W., & Scholze, M. (2011). Improving the predictability of global CO2 assimilation rates under climate change. Geophysical Research Letters, 38, L10404. doi:10.1029/2011gl047182.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC1515.pdf (Verlagsversion), 258KB
 
Datei-Permalink:
-
Name:
BGC1515.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/octet-stream
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1029/2011gl047182 (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Ziehn, T., Autor
Kattge, J.1, Autor           
Knorr, W., Autor
Scholze, M., Autor
Affiliations:
1TRY: Global Initiative on Plant Traits, Dr. J. Kattge, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497778              

Inhalt

einblenden:
ausblenden:
Schlagwörter: terrestrial biosphere biochemical-model photosynthesis uncertainties parameters plants inversion leaves
 Zusammenfassung: Feedbacks between the terrestrial carbon cycle and the atmosphere have the potential to greatly modify expected rates of future climate change. This makes it all the more urgent to exploit all existing data for the purpose of accurate modelling of the underlying processes. Here we use a Bayesian random sampling method to constrain parameters of the Farquhar model of leaf photosynthesis and a model of leaf respiration against a comprehensive set of plant trait data at the leaf level. The resulting probability density function (PDF) of model parameters is contrasted with a PDF derived using a conventional "expert knowledge" approach. When running the Biosphere Energy Transfer Hydrology (BETHY) scheme with a 1000- member sub-sample of each of the two PDFs for present climate and a climate scenario, we find that the use of plant trait data is able to reduce the uncertainty range of simulated net leaf assimilation (NLA) by more than a factor of two. Most of the remaining variability is caused by only four parameters, associated with the acclimation of photosynthesis to plant growth temperature and to how leaf stomata react to atmospheric CO2 concentration. We suggest that this method should be used extensively to parameterize Earth system models, given that data bases on plant traits are increasingly being made available to the modelling community. Citation: Ziehn, T., J. Kattge, W. Knorr, and M. Scholze (2011), Improving the predictability of global CO2 assimilation rates under climate change, Geophys. Res. Lett., 38, L10404, doi:10.1029/2011GL047182.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2011
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1029/2011gl047182
ISI: ://000291101900002
Anderer: BGC1515
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Geophysical Research Letters
  Kurztitel : GRL
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Geophysical Union
Seiten: - Band / Heft: 38 Artikelnummer: - Start- / Endseite: L10404 Identifikator: ISSN: 0094-8276
CoNE: https://pure.mpg.de/cone/journals/resource/954925465217