English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A Bayesian inversion estimate of N2O emissions for western and central Europe and the assessment of aggregation errors

Thompson, R. L., Gerbig, C., & Rödenbeck, C. (2011). A Bayesian inversion estimate of N2O emissions for western and central Europe and the assessment of aggregation errors. Atmospheric Chemistry and Physics, 11(7), 3443-3458. doi:10.5194/acp-11-3443-2011.

Item is

Files

show Files
hide Files
:
BGC1425D.pdf (Preprint), 2MB
Name:
BGC1425D.pdf
Description:
discussion paper
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC1425.pdf (Publisher version), 2MB
Name:
BGC1425.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/acp-11-3443-2011 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Thompson, R. L.1, Author           
Gerbig, C.2, Author           
Rödenbeck, C.3, Author           
Affiliations:
1Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497786              
2Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497784              
3Inverse Data-driven Estimation, Dr. C. Rödenbeck, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497785              

Content

show
hide
Free keywords: nitrous-oxide emissions regional-scale fluxes atmospheric observations greenhouse gases carbon-monoxide CO2 continent framework trends soils
 Abstract: A Bayesian inversion approach was used to retrieve temporally and spatially resolved N2O fluxes for western and central Europe using in-situ atmospheric observations from the tall tower site at Ochsenkopf, Germany (50 degrees 01' N, 11 degrees 48' E). For atmospheric transport, the STILT (Stochastic Time-Inverted Lagrangian Transport) model was employed, which was driven with ECMWF analysis and short term forecast fields. The influence of temporal aggregation error, as well as the choice of spatial and temporal correlation scale length, on the retrieval was investigated using a synthetic dataset consisting of mixing ratios generated for the Ochsenkopf site. We found that if the aggregation error is ignored, then a significant bias error in the retrieved fluxes ensues. However, by estimating this error and projecting it into the observation space, it was possible to avoid bias errors in the retrieved fluxes. Using the real observations from the Ochsenkopf site, N2O fluxes were retrieved every 7 days for 2007 at 2 by 2 degrees spatial resolution. Emissions of N2O were strongest during the summer and autumn months, with peak emissions in August and September, while the regions of Benelux and northern United Kingdom had strongest annual mean emissions.

Details

show
hide
Language(s): eng - English
 Dates: 2011
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/acp-11-3443-2011
ISI: ://000289548200028
Other: BGC1425
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 11 (7) Sequence Number: - Start / End Page: 3443 - 3458 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016
ISSN: 1680-7316