Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States

Le, P. V. V., Kumar, P., & Drewry, D. T. (2011). Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15085-15090. doi:10.1073/pnas.1107177108.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC1535.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
BGC1535.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/octet-stream
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174653/ (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Le, P. V. V., Autor
Kumar, P., Autor
Drewry, D. T.1, Autor           
Affiliations:
1Terrestrial Biosphere, Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497792              

Inhalt

einblenden:
ausblenden:
Schlagwörter: carbon sequestration CO2 uptake switchgrass miscanthus photosynthesis nitrogen impacts canopy energy maize
 Zusammenfassung: To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to second generation bioenergy crops such as miscanthus and switchgrass. The high biomass productivity of bioenergy crops in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO(2) and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO(2) (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2011
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1073/pnas.1107177108
ISI: ://WOS:000294804900025
Anderer: BGC1535
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: National Academy of Sciences
Seiten: - Band / Heft: 108 (37) Artikelnummer: - Start- / Endseite: 15085 - 15090 Identifikator: CoNE: https://pure.mpg.de/cone/journals/resource/954925427230
ISSN: 0027-8424