English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Measuring and modelling stem growth and wood formation: An overview

Downes, G. M., Drew, D., Battaglia, M., & Schulze, E.-D. (2009). Measuring and modelling stem growth and wood formation: An overview. Dendrochronologia, 27(2, Sp. Iss. SI), 147-157. doi:10.1016/j.dendro.2009.06.006.

Item is

Files

show Files
hide Files
:
BGC1267.pdf (Publisher version), 497KB
 
File Permalink:
-
Name:
BGC1267.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Downes, G. M., Author
Drew, D., Author
Battaglia, M., Author
Schulze, E.-D.1, Author           
Affiliations:
1Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              

Content

show
hide
Free keywords: Wood variability Cambium Phenology Dendrometers Silviscan Process modelling
 Abstract: The immediate environment of a cambial initial (weather and nutritional factors, growth regulators, physical stresses) varies continuously over time. Consequently local conditions in the cambium influencing wood formation at any given instant are unique. The distribution of these conditions can be influenced by longitudinal gradients (stem base to apex), circumferentially or by local factors, such as proximity to branches. Not surprisingly, therefore, the variation in wood properties within a stem is large and in seasonal climates, the greatest variation is typically found within an annual ring. A great advantage for the study of wood is that the net product of seasonal processes is recorded in the wood structure across the stem radius. Thus by studying the pattern of wood property variation, within the context of its growth history, we can gain insight into cause and effect relationships between the drivers of wood variability. Combining this with temporal, high-resolution measurements of stem growth, weather, and process modelling enables us to better understand and test hypotheses of wood formation and the causes of variability in wood properties. Over recent years and in partnership with industry and other research providers, we have been attempting to model tree growth (Cabala) and cambial activity (TreeRing and CAMBIUM) at a daily time step to explain radial variability in wood properties. CAMBIUM is the latest development of this effort, modelling a population of eucalypt cambial cells, accounting for fibre and vessel formation using physiologically meaningful relationships. Crown Copyright (C) 2009 Published by Elsevier GmbH. All rights reserved.

Details

show
hide
Language(s): eng - English
 Dates: 2009
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.dendro.2009.06.006
ISI: ://000270017500007
Other: BGC1267
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Dendrochronologia
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 27 (2, Sp. Iss. SI) Sequence Number: - Start / End Page: 147 - 157 Identifier: -