English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Vegetation and soil feedbacks at the Last Glacial Maximum

Jiang, D. B. (2008). Vegetation and soil feedbacks at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(1-2), 39-46. doi:10.1016/j.palaeo.2008.07.023.

Item is

Files

show Files
hide Files
:
BGC1165.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC1165.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Jiang, D. B.1, Author           
Affiliations:
1Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497755              

Content

show
hide
Free keywords: Last glacial maximum Vegetation feedback Soil feedback Simulation Coupled model Pollen-based reconstructions Asian monsoon climate Arctic ecosystems Global vegetation Model simulations African monsoon Atmospheric CO2 Midholocene North Paleodata
 Abstract: Vegetation feedback at the Last Glacial Maximum (LGM, about 21,000 calendar years ago) remains an unresolved question. A global atmospheric general circulation model (AGCM) is asynchronously coupled with an equilibrium terrestrial biosphere model in the present study. The coupled model is then used to investigate the influences of vegetation and soil feedbacks on the LGM climate. It is found that the simulated geographical distribution of vegetation at the LGM differs from the present pattern dramatically, and glacial vegetation cover tends to be reduced on average. Vegetation feedback alone leads to an annual Surface temperature decrease of 0.31 degrees C over the LGM ice-free continental areas. Additional soil feedback reinforced vegetation-induced cooling over high latitude Eurasia and from the eastern Middle East eastward to the Indian Peninsula significantly. In the tropics, a terrestrial annual surface cooling of 0.45 degrees C is produced by vegetation and soil feedbacks. it is shown that vegetation and soil feedbacks partly reduce data-model discrepancy as produced by the AGCM alone in some regions such as Central Africa, the Indian Peninsula, South China, and North Australia. (C) 2008 Elsevier B.V. All rights reserved. [References: 51]

Details

show
hide
Language(s):
 Dates: 2008
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.palaeo.2008.07.023
Other: BGC1165
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Palaeogeography, Palaeoclimatology, Palaeoecology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 268 (1-2) Sequence Number: - Start / End Page: 39 - 46 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925431351
ISSN: 0031-0182