English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Nocturnal stomatal conductance effects on the δ18O signatures of foliage gas exchange observed in two forest ecosystems

Seibt, U., Wingate, L., & Berry, J. A. (2007). Nocturnal stomatal conductance effects on the δ18O signatures of foliage gas exchange observed in two forest ecosystems. Tree Physiology, 27(4), 585-595. doi:10.1093/treephys/27.4.585.

Item is

Files

show Files
hide Files
:
BGC0993.pdf (Publisher version), 316KB
 
File Permalink:
-
Name:
BGC0993.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1093/treephys/27.4.585 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Seibt, U.1, Author           
Wingate, L., Author
Berry, J. A., Author
Affiliations:
1Research Group Carbon-Change Atmosphere, Dr. J. Lloyd, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497762              

Content

show
hide
Free keywords: Branch chamber method Fagus sylvatica Leaf water enrichment Picea sitchensis Isotope composition Field conditions Atmospheric CO2 Nonsteady state Carbon-dioxide Sitka spruce Diurnal-variation Respired CO2 Dry-matter Water o-18
 Abstract: We report field observations of oxygen isotope (O-18) discrimination during nocturnal foliage respiration ((18)Delta(R)) in branch chambers in two forest ecosystems: a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation in Scotland; and a beech (Fagus sylvatica L.) forest in Germany. We used observations and modeling to examine the impact of nocturnal stomatal conductance on the O-18/(16O) (delta O-18) signatures of foliage gas exchange at night. We found that nocturnal stomatal conductance can influence the delta O-18 signature by affecting: (1) the bidirectional diffusion Of CO2 into and out of the leaf (with isotopic equilibration); and (2) the O-18 enrichment of the foliage water with which the CO2 equilibrates. Both effects were manifest in high apparent (18)Delta(R) values and enriched delta O-18 signatures of foliage water at night. The effects were more pronounced for Sitka spruce because of its higher nocturnal stomatal conductance and higher specific leaf water content compared to beech. We found that taking the effects of nocturnal stomatal conductance into account may change the sign of the delta O-18 signature of nocturnal foliage respiration, generally thought to decrease the delta O-18 of atmospheric CO2. We conclude that nocturnal stomatal exchange can have a profound effect on isotopic exchange depending on species and environmental conditions. These effects can be important when using delta O-18 signatures of canopy CO2 to distinguish foliage and soil respiration, and when modeling the delta O-18 signature of CO2 exchanged between ecosystems and the atmosphere. [References: 38]

Details

show
hide
Language(s):
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0993
DOI: 10.1093/treephys/27.4.585
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Tree Physiology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Victoria [B.C.] : Heron Pub.
Pages: - Volume / Issue: 27 (4) Sequence Number: - Start / End Page: 585 - 595 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925546279