English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification?

Kleidon, A., Fraedrich, K., & Low, C. (2007). Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification? Biogeosciences, 4(5), 707-714. doi:10.5194/bg-4-707-2007.

Item is

Files

show Files
hide Files
:
BGC1036.pdf (Publisher version), 4MB
Name:
BGC1036.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC1036D.pdf (Preprint), 4MB
Name:
BGC1036D.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/bg-4-707-2007 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Kleidon, A.1, Author           
Fraedrich, K., Author
Low, C., Author
Affiliations:
1Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497761              

Content

show
hide
Free keywords: Planet simulator Climate Model Stability Radiation Dynamics Feedback Drought African Region
 Abstract: Multiple steady states in the atmosphere-biosphere system can arise as a consequence of interactions and positive feedbacks. While atmospheric conditions affect vegetation productivity in terms of available light, water, and heat, different levels of vegetation productivity can result in differing energy- and water partitioning at the land surface, thereby leading to different atmospheric conditions. Here we investigate the emergence of multiple steady states in the terrestrial atmosphere-biosphere system and focus on the role of how vegetation is represented in the model: (i) in terms of a few, discrete vegetation classes, or (ii) a continuous representation. We then conduct sensitivity simulations with respect to initial conditions and to the number of discrete vegetation classes in order to investigate the emergence of multiple steady states. We find that multiple steady states occur in our model only if vegetation is represented by a few vegetation classes. With an increased number of classes, the difference between the number of multiple steady states diminishes, and disappears completely in our model when vegetation is represented by 8 classes or more. Despite the convergence of the multiple steady states into a single one, the resulting climate-vegetation state is nevertheless less productive when compared to the emerging state associated with the continuous vegetation parameterization. We conclude from these results that the representation of vegetation in terms of a few, discrete vegetation classes can result (a) in an artificial emergence of multiple steady states and (b) in a underestimation of vegetation productivity. Both of these aspects are important limitations to be considered when global vegetation-atmosphere models are to be applied to topics of global change. [References: 26]

Details

show
hide
Language(s):
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC1036
DOI: 10.5194/bg-4-707-2007
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biogeosciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Pages: - Volume / Issue: 4 (5) Sequence Number: - Start / End Page: 707 - 714 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006
ISSN: 1726-4170