English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species

Kattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment, 30(9), 1176-1190. doi:10.1111/j.1365-3040.2007.01690.x.

Item is

Files

show Files
hide Files
:
BGC1019.pdf (Publisher version), 368KB
 
File Permalink:
-
Name:
BGC1019.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Kattge, Jens1, Author           
Knorr, W., Author
Affiliations:
1TRY: Global Initiative on Plant Traits, Dr. J. Kattge, Research Group Organismic Biogeochemistry, Dr. C. Wirth, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497793              

Content

show
hide
Free keywords: Carbon cycle Climate change Farquhar model J(max) Photosynthetic capacity V-cmax V-max Limited photosynthesis Seasonal variability Nonlinear inversion Leaf photosynthesis Response functions Spinach leaves Elevated CO2 Parameters Dependence Forest
 Abstract: The Farquhar et al. model Of C-3 photosynthesis is frequently used to study the effect of global changes on the biosphere. Its two main parameters representing photosynthetic capacity, V-cmax and J(max), have been observed to acclimate t o plant growth temperature for single species, but a general formulation has never been derived. Here, we present a reanalysis of data from 36 plant species to quantify the temperature dependence Of V-cmax, and J(max) with a focus on plant growth temperature, i.e. the plants' average ambient temperature during the preceding month. The temperature dependence of V-cmax and J(max) within each data set was described very well by a modified Arrhenius function that accounts for a decrease of V-cmax, and J(max) at high temperatures. Three parameters were optimized: base rate, activation energy and entropy term. An effect of plant growth temperature on base rate and activation energy could not be observed, but it significantly affected the entropy term. This caused the optimum temperature of V-cmax and J(max) to increase by 0.44 degrees C and 0.33 degrees C per 1 degrees C increase of growth temperature. While the base rate of V-cmax and J(max) seemed not to be affected, the ratio J(max) : V-cmax at 25 degrees C significantly decreased with increasing growth temperature. This moderate temperature acclimation is sufficient to doublemodelled photosynthesis at 40 degrees C, if plants are grown at 25 degrees C instead of 17 degrees C. [References: 43]

Details

show
hide
Language(s):
 Dates: 2007
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1111/j.1365-3040.2007.01690.x
Other: BGC1019
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Plant, Cell and Environment
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford, England : Blackwell Science
Pages: - Volume / Issue: 30 (9) Sequence Number: - Start / End Page: 1176 - 1190 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925471334
ISSN: 0140-7791