English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Stable isotopes in precipitation in the Asian monsoon region

Vuille, M., Werner, M., Bradley, R. S., & Keimig, F. (2005). Stable isotopes in precipitation in the Asian monsoon region. Journal of Geophysical Research - Atmospheres, 110(23), D23108. doi:10.1029/2005JD006022.

Item is

Files

show Files
hide Files
:
BGC0863.pdf (Publisher version), 9MB
 
File Permalink:
-
Name:
BGC0863.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2005JD006022 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Vuille, M., Author
Werner, M.1, Author           
Bradley, R. S., Author
Keimig, F., Author
Affiliations:
1Research Group Paleo-Climatology, Dr. S. P. Harrison, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497765              

Content

show
hide
Free keywords: Indian-summer monsoon General-circulation model Interannual variability Ice cores Tibetan plateau Atmospheric circulation Climatic controls Enso relationship Tropical america Central himalaya
 Abstract: [1] The influence of the Asian monsoon on the delta(18)O composition of precipitation is investigated on the basis of the ECHAM-4 Atmospheric General Circulation Model (AGCM), fitted with stable isotopic tracers. The model is forced with prescribed sea surface temperatures (SST) over the last few decades of the 20th century. The simulated climate and climate - stable isotope relationships are validated with observational data from the International Atomic Energy Agency - Global Network of Isotopes in Precipitation (IAEA-GNIP) and reanalysis data. The model shows deficiencies when simulating interannual variations of monsoon precipitation, but the associated monsoon circulation is quite accurately reproduced, in particular when run in a high-resolution (T106) version. The modeled stable isotope distribution is quite similar to observations, but the local climatic controls on delta(18)O are overestimated. The influence of the Asian monsoon on delta(18)O is analyzed on the basis of a vertical wind shear index M, indicative of variations in large-scale monsoon strength. The ECHAM model simulates a significant negative relationship between delta(18)O composition of precipitation and M over most monsoon-affected areas, consistent with the IAEA-GNIP data. Variations in the amount of precipitation provide a first-order explanation for this relationship. Distillation processes during transport and hence increased rainout and depletion of heavy isotopes upstream may also lead to a significant monsoon-delta(18)O relationship in areas where local precipitation is not affected by monsoon variability. The modern delta(18)O record from the Dasuopu ice core in the Himalayas is a good indicator of the large-scale monsoon circulation, a relationship that is correctly simulated by the T106 version of the ECHAM model. Our results suggest that delta(18)O variations in this region are sensitive to fluctuations in Asian monsoon intensity. [References: 65]

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2005JD006022
Other: BGC0863
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research - Atmospheres
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 110 (23) Sequence Number: - Start / End Page: D23108 Identifier: -