English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Modeling glacial-interglacial changes in global fire regimes and trace gas emissions

Thonicke, K., Prentice, I. C., & Hewitt, C. (2005). Modeling glacial-interglacial changes in global fire regimes and trace gas emissions. Global Biogeochemical Cycles, 19(3), GB3008. doi:10.1029/2004GB002278.

Item is

Files

show Files
hide Files
:
BGC0820.pdf (Publisher version), 676KB
 
File Permalink:
-
Name:
BGC0820.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2004GB002278 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Thonicke, K.1, Author           
Prentice, I. C., Author
Hewitt, C., Author
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              

Content

show
hide
Free keywords: Low atmospheric CO2 Terrestrial carbon storage Plant-climate interactions Papua-new-guinea Physiological significance Maximum Vegetation Biomass Indonesia Dynamics
 Abstract: [1] Climate at the Last Glacial Maximum (LGM) together with low atmospheric CO2 concentration forced a shift in vegetation zones, generally favored grasses over woody plants and allowed the colonization of continental shelves. Many studies using models and/or palaeo data have focused on reconstructing climate and vegetation changes between LGM and present, but the implications for changes in fire regime and atmospheric chemistry have not previously been analyzed. We have investigated possible global changes in fire regime using climate model simulations of the LGM to drive the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with its embedded fire model, Glob-FIRM. Simulation results reveal a pronounced shift of pyrogenic emission sources to lower latitudes. Global total emissions were slightly reduced. Enhanced nitrogen oxides emissions in the tropics could potentially have increased the oxidizing capacity of the atmosphere, helping to explain the low atmospheric methane concentrations during glacial periods as observed in the ice core records. [References: 39]

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2004GB002278
Other: BGC0820
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Geophysical Union
Pages: - Volume / Issue: 19 (3) Sequence Number: - Start / End Page: GB3008 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925553383
ISSN: 0886-6236