English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A proteomic fingerprint of dissolved organic carbon and of soil particles

Schulze, W. X., Gleixner, G., Kaiser, K., Guggenberger, G., Mann, M., & Schulze, E.-D. (2005). A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia, 142(3), 335-343.

Item is

Files

show Files
hide Files
:
BGC1008.pdf (Publisher version), 458KB
 
File Permalink:
-
Name:
BGC1008.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Schulze, W. X., Author
Gleixner, G.1, Author           
Kaiser, K., Author
Guggenberger, G., Author
Mann, M., Author
Schulze, E.-D.2, Author           
Affiliations:
1Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497773              
2Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              

Content

show
hide
Free keywords: -
 Abstract: Mass spectrometry-based proteomics was applied to analyze proteins isolated from dissolved organic matter (DOM). The focal question was to identify the type and biological origin of proteins in DOM, and to describe diversity of protein origin at the level of higher taxonomic units, as well as to detect extracellular enzymes possibly important in the carbon cycle. Identified proteins were classified according to their phylogenetic origin and metabolic function using the National Center for Biotechnology Information (NCBI) protein and taxonomy database. Seventy-eight percent of the proteins in DOM from the lake but less than 50% in forest soil DOM originated from bacteria. In a deciduous forest, the number of identified proteins decreased from 75 to 28 with increasing soil depth and decreasing total soil organic carbon content. The number of identified proteins and taxonomic groups was 50% higher in winter than in summer. In spruce forest, number of proteins and taxonomic groups decreased by 50% on a plot where trees had been girdled a year before and carbohydrate transport to roots was terminated. After girdling, proteins from four taxonomic groups remained as compared to nine taxonomic groups in healthy forest. Enzymes involved in degradation of organic matter were not identified in free soil DOM. However, cellulases and laccases were found among proteins extracted from soil particles, indicating that degradation of soil organic matter takes place in biofilms on particle surfaces. These results demonstrate a novel application of proteomics to obtain a ldquoproteomic fingerprintrdquo of presence and activity of organisms in an ecosystem.

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC1008
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Oecologia
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin : Springer-Verlag.
Pages: - Volume / Issue: 142 (3) Sequence Number: - Start / End Page: 335 - 343 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/1000000000265440
ISSN: 0029-8549