English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia

Schulze, E.-D., Wirth, C., Mollicone, D., & Ziegler, W. (2005). Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia, 146(1), 77-88. doi:10.1007/s00442-005-0173-6.

Item is

Files

show Files
hide Files
:
BGC0848.pdf (Publisher version), 642KB
 
File Permalink:
-
Name:
BGC0848.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Schulze, E.-D.1, Author           
Wirth, C.2, Author           
Mollicone, D., Author
Ziegler, W.1, Author           
Affiliations:
1Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              
2Research Group Organismic Biogeochemistry, Dr. C. Wirth, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497764              

Content

show
hide
Free keywords: Boreal forest Succession Stand density Basal area Stand age Canadian boreal forest British-columbia Balsam fir Regeneration Spruce Coexistence Growth Dynamics Patterns Models
 Abstract: The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve-linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached > 30 m(2)/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100-400 trees/ha, it has less mortality, but reached the highest age (> 350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed "mixed boreal forest" is a stage about 120 years after fire reaching a BA of > 40 m(2)/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000-6,000 trees/ha), but Picea becomes dominant after 150-200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40-50 m(2)/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic. [References: 44]

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0848
DOI: 10.1007/s00442-005-0173-6
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Oecologia
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin : Springer-Verlag.
Pages: - Volume / Issue: 146 (1) Sequence Number: - Start / End Page: 77 - 88 Identifier: ISSN: 0029-8549
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000265440