English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Long-term sensitivity of soil carbon turnover to warming

Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433(7023), 298-301.

Item is

Files

show Files
hide Files
:
BGC0755.pdf (Publisher version), 336KB
 
File Permalink:
-
Name:
BGC0755.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Knorr, W.1, Author           
Prentice, I. C.1, Author           
House, J. I.1, Author           
Holland, E. A.2, Author           
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              
2Research Group Bioathmospheric Chemistry, Dr. E. Holland, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497758              

Content

show
hide
Free keywords: Organic-matter Temperature-dependence Climate-change CO2 emissions Respiration Decomposition Models Mineralization Constraints Responses
 Abstract: The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate(1). Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition(2-8) at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world(9,10). In soil warming experiments, the initially increased carbon dioxide efflux returns to pre-warming rates within one to three years(10-14), and apparent carbon pool turnover times are insensitive to temperature(15). It has already been suggested that the apparent lack of temperature dependence could be an artefact due to neglecting the extreme heterogeneity of soil carbon(16), but no explicit model has yet been presented that can reconcile all the above findings. Here we present a simple three-pool model that partitions SOC into components with different intrinsic turnover rates. Using this model, we show that the results of all the soil-warming experiments are compatible with long-term temperature sensitivity of SOC turnover: they can be explained by rapid depletion of labile SOC combined with the negligible response of non-labile SOC on experimental timescales. Furthermore, we present evidence that non-labile SOC is more sensitive to temperature than labile SOC, implying that the long-term positive feedback of soil decomposition in a warming world may be even stronger than predicted by global models(1,17-20). [References: 30]

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0755
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 433 (7023) Sequence Number: - Start / End Page: 298 - 301 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925427238
ISSN: 0028-0836