English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The depression of tropical snowlines at the last glacial maximum: What can we learn from climate model experiments?

Kageyama, M., Harrison, S. P., & Abe-Ouchi, A. (2005). The depression of tropical snowlines at the last glacial maximum: What can we learn from climate model experiments? Quaternary International, 138-139, 202-219.

Item is

Files

show Files
hide Files
:
BGC0824.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC0824.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kageyama, M., Author
Harrison, S. P.1, Author           
Abe-Ouchi, A., Author
Affiliations:
1Research Group Paleo-Climatology, Dr. S. P. Harrison, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497765              

Content

show
hide
Free keywords: Sea-surface temperature Ice-age Project
 Abstract: Analyses of simulations of the last glacial maximum (LGM) made with 17 atmospheric general circulation models (AGCMs) participating in the Paleoclimate Modelling Intercomparison Project, and a high-resolution (T106) version of one of the models (CCSR1), show that changes in the elevation of tropical snowlines (as estimated by the depression of the maximum altitude of the 0 degrees C isotherm) are primarily controlled by changes in sea-surface temperatures (SSTs). The correlation between the two variables, averaged for the tropics as a whole, is 95%, and remains > 80% even at a regional scale. The reduction of tropical SSTs at the LGM results in a drier atmosphere and hence steeper lapse rates. Changes in atmospheric circulation patterns, particularly the weakening of the Asian monsoon system and related atmospheric humidity changes, amplify the reduction in snowline elevation in the northern tropics. Colder conditions over the tropical oceans combined with a weakened Asian monsoon could produce snowline lowering of up to 1000 m in certain regions, comparable to the changes shown by observations. Nevertheless, such large changes are not typical of all regions of the tropics. Analysis of the higher resolution CCSR1 simulation shows that differences between the free atmospheric and along-slope lapse rate can be large, and may provide an additional factor to explain regional variations in observed snowline changes. (c) 2005 Elsevier Ltd and INQUA. All rights reserved. [References: 22]

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0824
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Quaternary International
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Pergamon
Pages: - Volume / Issue: 138-139 Sequence Number: - Start / End Page: 202 - 219 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925588348
ISSN: 1040-6182