English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The aerosol-climate model ECHAM5-HAM

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., et al. (2004). The aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 5, 1125-1156. doi:10.5194/acp-5-1125-2005.

Item is

Files

show Files
hide Files
:
BGC0793D.pdf (Publisher version), 6MB
Name:
BGC0793D.pdf
Description:
Discussion paper
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/octet-stream / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
BGC0793.pdf (Publisher version), 7MB
Name:
BGC0793.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/acp-5-1125-2005 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Stier, P., Author
Feichter, J., Author
Kinne, S., Author
Kloster, S., Author
Vignati, E., Author
Wilson, J., Author
Ganzeveld, L., Author
Tegen, I.1, Author           
Werner, M.2, Author           
Balkanski, Y., Author
Schulz, M., Author
Boucher, O., Author
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              
2Research Group Paleo-Climatology, Dr. S. P. Harrison, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497765              

Content

show
hide
Free keywords: General-circulation model Tropospheric sulfur cycle Dry deposition parameterization Sun photometer measurements Size-segregated simulation Global 3-dimensional model Air-quality models Large-scale models Optical-thickness Atmospheric chemistry
 Abstract: The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SO4: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced.

Details

show
hide
Language(s):
 Dates: 2004
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0793
DOI: 10.5194/acp-5-1125-2005
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 5 Sequence Number: - Start / End Page: 1125 - 1156 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016