English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Carbon sequestration in the agricultural soils of Europe

Freibauer, A., Rounsevell, M. D. A., Smith, P., & Verhagen, J. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma, 122(1), 1-23.

Item is

Files

show Files
hide Files
:
BGC0709.pdf (Publisher version), 579KB
 
File Permalink:
-
Name:
BGC0709.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Freibauer, A.1, Author           
Rounsevell, M. D. A., Author
Smith, P., Author
Verhagen, J., Author
Affiliations:
1Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              

Content

show
hide
Free keywords: Carbon sequestration Kyoto protocol Agriculture Carbon Management Organic-matter Drained peatlands Land-use Mitigation Forest CO2 Restoration Fractions Emissions Nitrogen
 Abstract: In this review, technical and economically viable potentials for carbon sequestration in the agricultural soils of Europe by 2008-2012 are analysed against a business-as-usual scenario. We provide a quantitative estimation of the carbon absorption potential per hectare and the surface of agricultural land that is available and suitable for the implementation of those measures, their environmental effects as well as the effects on farm income. Realistically, agricultural soils in EU-15 can sequester up to 16-19 Mt C year(-1) during the first Kyoto commitment period (2008-2012), which is less than one fifth of the theoretical potential and equivalent to 2% of European anthropogenic emissions. We identified as most promising measures: the promotion of organic inputs on arable land instead of grassland, the introduction of perennials (grasses, trees) on arable set-aside land for conservation or biofuel purposes, to promote organic farming, to raise the water table in fanned peatland, and-with restrictions-zero tillage or conservation tillage. Many options have environmental benefits but some risk of increasing N2O emissions. For most measures it is impossible to determine the overall impact on farm profitability. Efficient carbon sequestration in agricultural soils demands a permanent management change and implementation concepts adjusted to local soil, climate and management features in order to allow selection of areas with high carbon sequestering potential. Some of the present agricultural policy schemes have probably helped to maintain carbon stocks in agricultural soils. (C) 2004 Elsevier B.V. All rights reserved. [References: 59]

Details

show
hide
Language(s):
 Dates: 2004
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0709
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geoderma
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 122 (1) Sequence Number: - Start / End Page: 1 - 23 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925401559
ISSN: 0016-7061