English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Winter wheat carbon exchange in Thuringia, Germany

Anthoni, P. M., Freibauer, A., Kolle, O., & Schulze, E.-D. (2004). Winter wheat carbon exchange in Thuringia, Germany. Agricultural and Forest Meteorology, 121(1-2), 55-67.

Item is

Files

show Files
hide Files
:
BGC0692.pdf (Publisher version), 255KB
 
File Permalink:
-
Name:
BGC0692.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Anthoni, P. M.1, Author           
Freibauer, A.1, Author           
Kolle, O.2, Author           
Schulze, E.-D.1, Author           
Affiliations:
1Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              
2Service Facility Field Measurements & Instrumentation, O. Kolle, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497769              

Content

show
hide
Free keywords: Winter wheat Net ecosystem exchange Eddy covariance Roth-c model Long-term experiments Soil organic-carbon Simulating trends Tall vegetation Climate-change Forest Sequestration Europe Model
 Abstract: Eddy covariance measurements and estimates of biomass net primary production (NPP) in combination with soil carbon turnover modelled by the Roth-C model were used to assess the ecosystem carbon balance of an agricultural ecosystem in Thuringia, Germany, growing winter wheat in 2001. The eddy CO2 flux measurements indicate an annual net ecosystem exchange (NEE) uptake in the range from -185 to -245 g C m(-2) per year. Main data analysis uncertainty in the annual NEE arises from night-time u* screening, other effects (e.g. coordinate rotation scheme) have only a small influence on the annual NEE estimate. In agricultural ecosystems the fate of the carbon removed during harvest plays a role in the net biome production (NBP) of the ecosystem, where NBP is given by net ecosystem production (NEP = -NEE) minus non-respiratory losses of the ecosystem (e.g. harvest). Taking account of the carbon removed by the wheat harvest (290 g C m(-2)), the agricultural field becomes a source of carbon with a NBP in the order of -45 to -105 g C m(-2) per year. Annual carbon balance modelled with the Roth-C model also indicated that the ecosystem was a source for carbon (NBP -25 to -55 g C m(-2) per year). Based on the modelling most of carbon respired resulted from changes in the litter and fast soil organic matter pool. Also, the crop and management history, particularly the C input to soil in the previous year, significantly affect next year's CO2 exchange. (C) 2003 Elsevier B.V. All rights reserved. [References: 36]

Details

show
hide
Language(s):
 Dates: 2004
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0692
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Agricultural and Forest Meteorology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 121 (1-2) Sequence Number: - Start / End Page: 55 - 67 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954928468040
ISSN: 0168-1923