Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., et al. (2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17(4), 1104. doi:10.1029/2003GB002035.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC0626.pdf (Verlagsversion), 716KB
 
Datei-Permalink:
-
Name:
BGC0626.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/octet-stream
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1029/2003GB002035 (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Reichstein, M.1, Autor           
Rey, A., Autor
Freibauer, A.2, Autor           
Tenhunen, J., Autor
Valentini, R., Autor
Banza, J., Autor
Casals, P., Autor
Cheng, Y. F., Autor
Grünzweig, J. M., Autor
Irvine, J., Autor
Joffre, R., Autor
Law, B. E., Autor
Loustau, D., Autor
Miglietta, F., Autor
Oechel, W., Autor
Ourcival, J.-M., Autor
Pereira, J. S., Autor
Peressotti, A., Autor
Ponti, F., Autor
Qi, Y., Autor
Rambal, S., AutorRayment, M., AutorRomanya, J., AutorRossi, F., AutorTedeschi, V., AutorTirone, G., AutorXu, M., AutorYakir, D., Autor mehr..
Affiliations:
1External Organizations, ou_persistent22              
2Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              

Inhalt

einblenden:
ausblenden:
Schlagwörter: carbon balance, drought, leaf area index Organic-matter decomposition; ponderosa pine forests; carbon-dioxide; CO2 efflux; ecosystem respiration; european forests; climate-change; dependence; exchange; moisture
 Zusammenfassung: [1] Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e. g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 mumol m(-2) s(-1). The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q(10) varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by Raich et al. [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the intersite variability, regardless of whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area<LF>index. Thus, for a monthly timescale, we developed a simple T&P&LAI model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time step model and explained 50% of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index. Before application at the continental or global scale, this approach should be further tested in boreal, cold-temperate, and tropical biomes as well as for non-woody vegetation.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2003
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1029/2003GB002035
Anderer: BGC0626
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Global Biogeochemical Cycles
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Geophysical Union
Seiten: - Band / Heft: 17 (4) Artikelnummer: - Start- / Endseite: 1104 Identifikator: CoNE: https://pure.mpg.de/cone/journals/resource/954925553383
ISSN: 0886-6236