English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The application and interpretation of Keeling plots in terrestrial carbon cycle research

Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R., Still, C. J., et al. (2003). The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17(1), 1022. doi:10.1029/2001GB001850.

Item is

Files

show Files
hide Files
:
BGC0623.pdf (Publisher version), 384KB
 
File Permalink:
-
Name:
BGC0623.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2001GB001850 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Pataki, D. E., Author
Ehleringer, J. R., Author
Flanagan, L. B., Author
Yakir, D., Author
Bowling, D. R., Author
Still, C. J., Author
Buchmann, N.1, Author           
Kaplan, J. O.2, Author           
Berry, J. A., Author
Affiliations:
1Research Group Biodiversity Ecosystem, Dr. N. Buchmann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497759              
2Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497754              

Content

show
hide
Free keywords: carbon cycle; carbon isotopes; ecosystem respiration; carbon dioxide; terrestrial ecosystems Soil organic-matter; isotope ratios; water-vapor; ecosystem respiration; atmospheric CO2; natural-abundance; helianthus- annuus; c-13/c-12 ratio; respired carbon; forest
 Abstract: [1] Photosynthesis and respiration impart distinct isotopic signatures to the atmosphere that are used to constrain global carbon source/sink estimates and partition ecosystem fluxes. Increasingly, the "Keeling plot'' method is being used to determine the carbon isotope composition of ecosystem respiration (delta(13)C(R)) in order to better understand the processes controlling ecosystem isotope discrimination. In this paper we synthesize emergent patterns in delta(13)C(R) by analyzing 146 Keeling plots constructed at 33 sites across North and South America. In order to interpret results from disparate studies, we discuss the assumptions underlying the Keeling plot method and recommend standardized methods for determining delta(13)C(R). These include the use of regression calculations that account for error in the x variable, and constraining estimates of delta(13)C(R) to nighttime periods. We then recalculate delta(13)C(R) uniformly for all sites. We found a high degree of temporal and spatial variability in C-3 ecosystems, with individual observations ranging from -19.0 to -32.6parts per thousand. Mean C-3 ecosystem discrimination was 18.3parts per thousand. Precipitation was a major driver of both temporal and spatial variability of delta(13)C(R), suggesting (1) a large influence of recently fixed carbon on ecosystem respiration and (2) a significant effect of previous climatic effects on delta(13)CR. These results illustrate the importance of water availability as a key control on atmospheric (CO2)-C-13 and highlight the potential of delta(13)C(R) as a useful tool for integrating environmental effects on dynamic canopy and ecosystem processes.

Details

show
hide
Language(s):
 Dates: 2003
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2001GB001850
Other: BGC0623
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Geophysical Union
Pages: - Volume / Issue: 17 (1) Sequence Number: - Start / End Page: 1022 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925553383
ISSN: 0886-6236