English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Stable isotope ratio mass spectrometry in global climate change research

Ghosh, P., & Brand, W. A. (2003). Stable isotope ratio mass spectrometry in global climate change research. International Journal of Mass Spectrometry, 228(1), 1-33.

Item is

Files

show Files
hide Files
:
BGC0593.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
BGC0593.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ghosh, P.1, Author           
Brand, W. A.1, Author           
Affiliations:
1Service Facility Stable Isotope/Gas Analytics, Dr. W. A. Brand, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497772              

Content

show
hide
Free keywords: climate change, stable isotopes, carbon cycle, isotope ratio mass spectrometry Atmospheric carbon-dioxide; general-circulation model; late quaternary climates; ice-sheet model; organic-matter; high-precision; soil carbonate; online determination; c-13 discrimination; orbital variations
 Abstract: Stable isotope ratios of the life science elements carbon, hydrogen, oxygen and nitrogen vary slightly, but significantly in major compartments of the earth. Owing mainly to antropogenic activities including land use change and fossil fuel burning, the C-13/C-12 ratio of CO2 in the atmosphere has changed over the last 200 years by 1.5 parts per thousand (from about 0.0111073 to 0.0110906). In between interglacial warm periods and glacial maxima, the 180/160 ratio of precipitation in Greenland has changed by as much as 5 parts per thousand (0.001935-0.001925). While seeming small, such changes are detectable reliably with specialised mass spectrometric techniques. The small changes reflect natural fractionation processes that have left their signature in natural archives. These enable us to investigate the climate of past times in order to understand how the Earth's climatic system works and how it can react to external forcing. In addition, studying contemporary isotopic change of natural compartments can help to identify sources and sinks for atmospheric trace gases provided the respective isotopic signatures are large enough for measurement and have not been obscured by unknown processes. This information is vital within the framework of the Kyoto process for controlling CO2 emissions. (C) 2003 Elsevier B.V. All rights reserved.

Details

show
hide
Language(s):
 Dates: 2003
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0593
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Journal of Mass Spectrometry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 228 (1) Sequence Number: - Start / End Page: 1 - 33 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954926232412
ISSN: 1387-3806