English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action

Levin, I., Ciais, P., Langenfelds, R., Schmidt, M., Ramonet, M., Sidorov, K., et al. (2002). Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action. Tellus, Series B - Chemical and Physical Meteorology, 54(5), 696-712. doi:10.1034/j.1600-0889.2002.01352.x.

Item is

Files

show Files
hide Files
:
BGC0498.pdf (Publisher version), 307KB
 
File Permalink:
-
Name:
BGC0498.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Levin, I., Author
Ciais, P., Author
Langenfelds, R., Author
Schmidt, M., Author
Ramonet, M., Author
Sidorov, K., Author
Tchebakova, N., Author
Gloor, M.1, Author           
Heimann, M.2, Author           
Schulze, E.-D.3, Author           
Vygodskaya, N. N., Author
Shibistova, O., Author
Lloyd, J.4, Author           
Affiliations:
1Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497786              
2Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497755              
3Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              
4Research Group Carbon-Change Atmosphere, Dr. J. Lloyd, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497762              

Content

show
hide
Free keywords: Atmospheric CO2; carbon-dioxide; methane emissions; sulfur- hexafluoride; seasonal-variation; modeling approach; SF6; transport; oxygen; water
 Abstract: A three-year trace gas climatology of CO2 and its stable isotopic ratios, as well as CH4, N2O and SF6, derived from regular vertical aircraft sampling over the Eurasian continent is presented. The four sampling sites range from about 1degreesE to 89degreesE in the latitude belt from 48N to 62degreesN. The most prominent features of the CO2 observations are an increase of the seasonal cycle amplitudes of CO2 and delta(13)C-CO2 in the free troposphere (at 3000 m a.s.l.) by more than 60% from Western Europe to Western and Central Siberia. delta(18)O-CO2 shows an even larger increase of the seasonal cycle amplitude by a factor of two from Western Europe towards the Ural mountains, which decreases again towards the most eastern site, Zotino. These data reflect a strong influence of carbon exchange fluxes with the continental biosphere. In particular, during autumn and winter delta(18)O- CO2 shows a decrease by more than 0.5parts per thousand from Orleans (Western Europe) to Syktyvkar (Ural mountains) and Zotino (West Siberia), mainly caused by soil respiration fluxes depleted in delta(18)O with respect to atmospheric CO2. CH4 mixing ratios in the free troposphere at 3000 m over Western Siberia are higher by about 20-30 ppb if compared to Western Europe. Wetland emissions seem to be particularly visible in July-September, with largest signals at Zotino in 1998. Annual mean CH4 mixing ratios decrease slightly from 1998 to 1999 at all Russian sites. In contrast to CO2 and CH4, which show significant vertical gradients between 2000 and 3000 m a.s.l., N2O mixing ratios are vertically very homogeneous and show no significant logitudinal gradient between the Ural mountains and Western Siberia, indicating insignificant emissions of this trace gas from boreal forest ecosystems in Western Siberia. The growth rate of N2O (1.2-1.3 ppb yr(-1)) and the seasonal amplitude (0:5-1.1 ppb) are similar at both aircraft sites, Syktyvkar and Zotino. For SF6 an annual increase of 5% is observed, together with a small seasonal cycle which is in phase with the N2O cycle, indicating that the seasonality of both trace gases are most probably caused by atmospheric transport processes with a possible contribution from stratosphere-troposphere exchange.

Details

show
hide
Language(s):
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0498
DOI: 10.1034/j.1600-0889.2002.01352.x
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Tellus, Series B - Chemical and Physical Meteorology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Copenhagen : Swedish Geophysical Society :
Pages: - Volume / Issue: 54 (5) Sequence Number: - Start / End Page: 696 - 712 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925506308
ISSN: 0280-6509