English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum

Kaplan, J. O., Prentice, I. C., Knorr, W., & Valdes, P. J. (2002). Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophysical Research Letters, 29(22), 2074. doi:10.1029/2002GL015230.

Item is

Files

show Files
hide Files
:
BGC0487.pdf (Publisher version), 695KB
 
File Permalink:
-
Name:
BGC0487.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2002GL015230 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Kaplan, Jed O.1, Author           
Prentice, I. Colin2, Author           
Knorr, W.2, Author           
Valdes, P. J., Author
Affiliations:
1Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497754              
2Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              

Content

show
hide
Free keywords: Deep-water circulation; cycle dynamics; taylor dome; ice core; biosphere; holocene; climate; sensitivity; vegetation; record
 Abstract: A dynamic global vegetation model (DGVM) was used to simulate global terrestrial carbon storage and stable carbon isotope composition changes for the last 21000 years. A paleoclimate scenario was provided by interpolation of coupled AGCM/mixed- layer ocean model experiments; [CO2](atm) data were obtained from the Byrd and Taylor Dome ice core records. According to the model results, terrestrial carbon storage at the Last Glacial Maximum (LGM, 21 ka) was 821 Pg C less than today. The modeled isotopic composition (delta(13)C) of total terrestrial carbon at LGM was enriched by 1.5parts per thousand compared to present. During the deglaciation (17-9 ka), vegetation expanded rapidly into formerly glaciated areas and carbon storage correspondingly increased. Increasing NPP sustained a continuing increase in terrestrial carbon storage through the Holocene. These results do not support the published hypothesis that terrestrial CO2 outgassing drove the ca. 20 ppm increase in [CO2](atm) after 8 ka. They are consistent with an alternative explanation based on the oceanic CaCO3 compensation response to the extraction of carbon from the atmosphere-ocean system during the deglaciation.

Details

show
hide
Language(s):
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2002GL015230
Other: BGC0487
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Research Letters
  Abbreviation : GRL
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 29 (22) Sequence Number: - Start / End Page: 2074 Identifier: ISSN: 0094-8276
CoNE: https://pure.mpg.de/cone/journals/resource/954925465217