English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Soil drought increases leaf and whole-plant water use of Prunus dulcis grown in the Negev Desert

Heilmeier, H., Wartinger, A., Erhard, M., Zimmermann, R., Horn, R., & Schulze, E.-D. (2002). Soil drought increases leaf and whole-plant water use of Prunus dulcis grown in the Negev Desert. Oecologia, 130(3), 329-336.

Item is

Files

show Files
hide Files
:
BGC0471.pdf (Publisher version), 90KB
 
File Permalink:
-
Name:
BGC0471.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Heilmeier, H., Author
Wartinger, A., Author
Erhard, M., Author
Zimmermann, R.1, Author           
Horn, R., Author
Schulze, E.-D.2, Author           
Affiliations:
1Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497755              
2Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              

Content

show
hide
Free keywords: almond; lysimeter; photosynthesis; transpiration Ulmus-americana seedlings; gas-exchange; varying nitrogen; photosynthesis; transpiration; conductance
 Abstract: Water use, both at the level of a single leaf and the whole plant, was studied for 1- to 4-year-old almond trees (Prunus dulcis) under and conditions in the Negev Desert (Israel). By planting the trees into lysimeters of different volumes (7, 14 and 21 m(3)), the amount of water available to the plants was experimentally controlled. Each year, at the beginning of the growing season, the lysimeters, which had been filled with local homogenized loess, were watered to field capacity. The trees received different relative amounts of water in relation to their leaf area on the one hand and lysimeter volume on the other, which caused different rates of soil drying throughout the season. The following hypotheses were tested. (1) The amount of CO2 assimilated per transpiration and (2) biomass production per unit of water used increases with (a) decreasing amount of soil water applied and (b) increasing leaf area, which should enhance growth in spring during periods of low evaporative demand. At the leaf level, the ratio of daily CO2 assimilation (A) to daily transpiration (E) was independent of lysimeter size, leaf area and pre-dawn water potential, but decreased with increasing leaf-to-air vapour pressure difference (D-1). Consequently, during the course of the season, A/E decreased from spring to summer in accordance with rising D-1. However, when measured at a constant D-1, the seasonal course in A/E disappeared. At the whole plant level, the ratio of total lifetime biomass production (B) to the amount of water transpired (M increased with leaf area (i.e. demand for water), the increase being stronger with increasing water supply. We conclude that almond trees did not adapt physiologically to a limited water supply, but maximized their carbon gain for a given amount of water available by phenological processes such as high growth rate during periods of low evaporative demand of the atmosphere.

Details

show
hide
Language(s):
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0471
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Oecologia
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin : Springer-Verlag.
Pages: - Volume / Issue: 130 (3) Sequence Number: - Start / End Page: 329 - 336 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/1000000000265440
ISSN: 0029-8549