English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Quantification of insect nitrogen utilization by the venus fly trap Dionaea muscipula catching prey with highly variable isotope signatures

Schulze, W., Schulze, E. D., Schulze, I., & Oren, R. (2001). Quantification of insect nitrogen utilization by the venus fly trap Dionaea muscipula catching prey with highly variable isotope signatures. Journal of Experimental Botany, 52(358), 1041-1049. doi:10.1093/jexbot/52.358.1041.

Item is

Files

show Files
hide Files
:
BGC0413.pdf (Publisher version), 214KB
 
File Permalink:
-
Name:
BGC0413.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1093/jexbot/52.358.1041 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Schulze, W., Author
Schulze, E. D.1, Author           
Schulze, I., Author
Oren, R., Author
Affiliations:
1Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              

Content

show
hide
Free keywords: Venus fly trap Insect capture Isotope signature Nitrogen Growth Action-potentials Growth Nepenthes Capture Drosera Plants
 Abstract: Dionaea is a highly specialized carnivorous plant species with a unique mechanism for insect capture. The leaf is converted into an osmotically driven trap that closes when an insect triggers sensory trichomes. This study investigates the significance of insect capture for growth of Dionaea at different successional stages after a fire, under conditions where the prey is highly variable in its isotope signature. The contribution of insect-derived nitrogen (N) was estimated using the natural abundance of N-15. In contrast to previous N-15 studies On carnivorous plants, the problem emerges that delta N-15 values of prey insects ranged between -4.47 parts per thousand (grasshoppers) and +7.21 parts per thousand (ants), a range that exceeds the delta N-15 values of non carnivorous reference plants (-4.2 parts per thousand) and soils (+3 parts per thousand). Thus, the isotope-mixing model used by Shearer and Kohl to estimate the amount of insect-derived N is not applicable. In a novel approach, the relationships of delta N-15 values of different organs with delta N-15 Of trapping leaves were used to estimate N partitioning within the plant. It is estimated that soon after fire approximately 75% of the nitrogen is obtained from insects, regardless of plant size or developmental stage. The estimates are verified by calculating the average isotope signatures of insects from an isotope mass balance and comparing this with the average measured delta N-15 values of insects. It appears that for Dionaea to survive and reach the flowering stage, seedlings must first reach the 6th-leaf rosette stage, in which trap surface area nearly doubles and facilitates the capture of large insects. Large amounts of nitrogen thus made available to plants may facilitate an enhanced growth rate and the progressive production of additional large traps. Dionaea reaches a maximum abundance after fire when growth of the competing vegetation is suppressed. About 10 years after fire, when grasses and shrubs recover, Dionaea becomes overtopped by other species. This would not only reduce carbon assimilation but also the probability of catching larger prey. The amount of insect-derived nitrogen decreases to 46%, and Dionaea becomes increasingly dependent on N-supply from the soil. Competition for both light and N may cause the near disappearance of Dionaea in older stages of the fire succession. [References: 23]

Details

show
hide
Language(s):
 Dates: 2001
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0413
DOI: 10.1093/jexbot/52.358.1041
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Experimental Botany
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Oxford University Press [etc.]
Pages: - Volume / Issue: 52 (358) Sequence Number: - Start / End Page: 1041 - 1049 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925413883
ISSN: 0022-0957