English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Interactive soil dust aerosol model in the GISS GCM 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols

Perlwitz, J., Tegen, I., & Miller, R. L. (2001). Interactive soil dust aerosol model in the GISS GCM 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. Journal of Geophysical Research - Atmospheres, 106(16), 18167-18192. doi:10.1029/2000JD900668.

Item is

Files

show Files
hide Files
:
BGC0342.pdf (Publisher version), 4MB
 
File Permalink:
-
Name:
BGC0342.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/2000JD900668 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Perlwitz, J., Author
Tegen, I.1, Author           
Miller, R. L., Author
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              

Content

show
hide
Free keywords: General-circulation model Mineral dust Optical-thickness Size distribution Climate-change Desert dust Simulations Surface Troposphere Atmosphere
 Abstract: The sensitivity of the soil dust aerosol cycle to radiative forcing by the soil dust aerosol particles themselves is studied. Four experiments with the NASA GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as a lower boundary condition. In one experiment, dust is included as a dynamic tracer with no radiative effect, whereas dust interacts with radiation in the other simulations. The single-scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, although this albedo is varied from experiment to experiment. On a global scale the radiative forcing by dust generally causes a reduction in the atmospheric dust load, corresponding to a decreased dust source flux. The dust source flux and its changes are analyzed in more detail for the main source regions. This analysis shows that the reduction varies both with the season and with the single-scattering albedo of the dust particles. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single-scattering albedo in the model should be a function of the source region, because dust concentration and the climate response to dust radiative forcing are sensitive to dust radiative parameters. [References: 50]

Details

show
hide
Language(s):
 Dates: 2001
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0342
DOI: 10.1029/2000JD900668
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research - Atmospheres
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 106 (16) Sequence Number: - Start / End Page: 18167 - 18192 Identifier: ISSN: 0747-7309