English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Uncertainties in global terrestrial biosphere modeling, Part I: A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme

Knorr, W., & Heimann, M. (2001). Uncertainties in global terrestrial biosphere modeling, Part I: A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme. Global Biogeochemical Cycles, 15(1), 207-225. doi:10.1029/1998GB001059.

Item is

Files

show Files
hide Files
:
BGC0372.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
BGC0372.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/1998GB001059 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Knorr, W.1, Author           
Heimann, M.2, Author           
Affiliations:
1Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497753              
2Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497755              

Content

show
hide
Free keywords: Net primary productivity Stomatal conductance Carbon assimilation Active radiation Atmospheric CO2 Climate change Land-cover Soil-water Plant Forest
 Abstract: Modeling the terrestrial biosphere's carbon exchanges constitutes a key tool for investigation of the global carbon cycle, which has lead to the recent development of numerous terrestrial biosphere models. However, as demonstrated by recent intercomparison studies, results of plant carbon uptake, expressed as net primary productivity (NPP), still diverge to a large degree. Here, we address the question of uncertainty by conducting a series of sensitivity tests with a single, process-based model, the Biosphere Energy-Transfer Hydrology (BETHY) scheme. We calculate NPP globally for a standard model setup and various alternative model setups representing either changes in modeling strategy or approximate uncertainties of the most important model parameters. The results show that estimated uncertainties of many process parameters are still too large for reliable predictions of global NPP. The largest uncertainties come from plant respiration, photosynthesis and soil water storage. The surface radiation balance and day-today variations in weather, often not included into terrestrial vegetation models, are also found to contribute significantly to overall uncertainties, while stomatal behavior, the aerodynamic coupling of vegetation and atmosphere, and the choice of the vegetation map turn out to be relatively unimportant. A further comparison with field measurements of NPP suggests that such data are too unreliable for validating biosphere model predictions. We conclude that the inherent uncertainties in process-oriented biosphere modeling are able to explain the discrepancies that have occurred when comparing the results of different models. [References: 99]

Details

show
hide
Language(s):
 Dates: 2001
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0372
DOI: 10.1029/1998GB001059
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Geophysical Union
Pages: - Volume / Issue: 15 (1) Sequence Number: - Start / End Page: 207 - 225 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925553383
ISSN: 0886-6236