English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Optimal sampling of the atmosphere for purpose of inverse modeling: A model study

Gloor, M., Fan, S.-M., Pacala, S., & Sarmiento, J. (2000). Optimal sampling of the atmosphere for purpose of inverse modeling: A model study. Global Biogeochemical Cycles, 14(1), 407-428. doi:10.1029/1999GB900052.

Item is

Files

show Files
hide Files
:
BGC0225.pdf (Publisher version), 8MB
 
File Permalink:
-
Name:
BGC0225.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/octet-stream
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1029/1999GB900052 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Gloor, Manuel1, Author           
Fan, S.-M., Author
Pacala, S., Author
Sarmiento, J., Author
Affiliations:
1Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497786              

Content

show
hide
Free keywords: CO2
 Abstract: The 66 stations of the GLOBALVIEW-CO2 sampling network (GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project Carbon Dioxide, (1997)) are located primarily remotely from continents where signals of fossil fuel consumption and biospheric exchange are diluted. It is thus not surprising that inversion studies are able to estimate terrestrial sources and sinks only to a very limited extent. The poor constraint on terrestrial fluxes propagates to the oceans and strongly limits estimates of oceanic fluxes as well, at least if no use is made of other information such as isotopic ratios. We analyze here the resolving power of the GLOBALVIEW-CO2 network, compare the efficiency of different measurement strategies, and determine optimal extensions to the present network. We find the following: (1) GLOBALVIEW-CO2 is well suited to characterize the meridional distribution of sources and sinks but is poorly suited to separate terrestrial from oceanic sinks at the same latitude. The most poorly constrained regions are South America, Africa, and southern hemispheric oceans. (2) To improve the network, observing stations need to be positioned on the continents near to the largest biospheric signals despite the large diurnal and seasonal fluctuations associated with biological activity and the dynamics of the PBL, The mixing in the atmosphere is too strong to allow positioning of stations remote from large fluxes, Our optimization results prove to be fairly insensitive to the details of model transport and the inversion model with the addition of similar to 10 optimally positioned stations. (3) The best measurement strategy among surface observations, N-S airplane transects, and vertical profiles proves to be vertical profiles. (4) Approximately 12 optimally positioned vertical profiles or 30 surface stations in addition to GLOBALVIEW-CO2 would reduce estimate uncertainties caused by insufficient data coverage from similar to 1 Pg C yr(-1) per region to similar to 0.2 Pg C yr(-1) per region. [References: 16]

Details

show
hide
Language(s):
 Dates: 2000
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC0225
DOI: 10.1029/1999GB900052
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Geophysical Union
Pages: - Volume / Issue: 14 (1) Sequence Number: - Start / End Page: 407 - 428 Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/954925553383
ISSN: 0886-6236