English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Elevated Levels of Rad51 Recombination Protein in Tumor Cells

Raderschall, E., Stout, K., Freier, S., Suckow, V., Schweiger, S., & Haaf, T. (2002). Elevated Levels of Rad51 Recombination Protein in Tumor Cells. Cancer Research, 62(1), 219-225.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Raderschall, Elke1, Author
Stout, Karen1, Author
Freier, Susanne2, Author           
Suckow, Vanessa3, Author           
Schweiger, Susann2, Author           
Haaf, Thomas2, Author           
Affiliations:
1Max Planck Society, ou_persistent13              
2Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433549              
3Signal Transduction in Mental Retardation and Pain (Tim Hucho), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479646              

Content

show
hide
Free keywords: -
 Abstract: Rad51 is the key enzyme for homologous recombination, an evolutionarily conserved mechanism for the repair of DNA damage and the generation of genetic diversity. Given the observation that many tumors become resistant to radiation therapy and DNA-damaging chemotherapeutics and also that tumor cell populations can acquire a high number of genetic alterations and then expand clonally, dysfunction of the mammalian Rad51 recombinase could play a major role in the multistep process of tumorigenesis. The data we present provide further strong support for this hypothesis. Using anti-Rad51 immunofluorescence staining, widely different tumor cell lines displayed increased numbers of nuclei with focally concentrated Rad51 protein compared with nonmalignant control cell lines. These nuclear foci are thought to represent a repairosome-type assembly of Rad51 and other proteins required for recombinational DNA repair. By Western blot analyses, the net amount of Rad51 protein was increased 2–7-fold in all tested tumor cell lines. Inhibition of de novo protein synthesis by cycloheximide treatment showed a similar half-life of Rad51 protein in normal and tumor cells. Fluorescence in situ hybridization experiments did not detect Rad51 gene amplifications in tumors. Because Northern blot analysis demonstrated highly elevated Rad51 mRNA levels, we conclude that the increases in Rad51 protein and nuclear foci formation in tumor cells are the result of transcriptional up-regulation.

Details

show
hide
Language(s): eng - English
 Dates: 2002-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 24247
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Cancer Research
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 62 (1) Sequence Number: - Start / End Page: 219 - 225 Identifier: -