English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Characterization of Two Highly Similar Rad51 Homologs of Physcomitrella patens

Ayora, S., Piruat, J. I., Luna, R., Reiss, B., Russo, V. E. A., Aguilera, A., et al. (2002). Characterization of Two Highly Similar Rad51 Homologs of Physcomitrella patens. Journal of Molecular Biology, 316(1), 35-49.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : JMB

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ayora, Silvia, Author
Piruat, José I., Author
Luna, Rosa, Author
Reiss, Bernd1, Author
Russo, Vincenzo E. A.2, Author           
Aguilera, Andrés, Author
Alonso, Juan C., Author
Affiliations:
1Max Planck Society, ou_persistent13              
2Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433550              

Content

show
hide
Free keywords: DNA recombination; DNA repair; RecA; ATPases; strand exchange
 Abstract: The moss Physcomitrella patens, which is a land plant with efficient homologous recombination, encodes two Rad51 proteins (PpaRad51.1 and PpaRad51.2). The PpaRad51.1 and PpaRad51.2 proteins, which share 94 % identity between them, interact with themselves and with each other. Both proteins bind ssDNA and dsDNA in a Mg2+ and pH-dependent manner, with a stoichiometry of ~one PpaRad51.1 monomer per 3(±1) nt or bp and one PpaRad51.2 monomer per 1(±0.5) nt or bp, respectively. At neutral pH, a 1.6-fold excess of both proteins is required for ssDNA and dsDNA binding. PpaRad51.1 and PpaRad51.2 show ssDNA-dependent ATPase activity and efficiently promote strand annealing in a nucleotide-independent but in a Mg2+-dependent manner. Both proteins promote joint-molecule formation, DNA strand invasion and are able to catalyse strand exchange in the presence of Mg2+ and ATP. No further increase in the activities is observed when both proteins are present in the same reaction. None of the PpaRad51 gene products complement the DNA repair and recombination phenotype of Saccharomyces cerevisiaerad51 mutants. However, PpaRad51.1 confers a dominant-negative DNA repair phenotype, and both PpaRad51 proteins reduce the levels of double-strand break-induced recombination when overexpressed in S. cerevisiae wt cells. These results suggest that both PpaRad51 proteins are bona fide Rad51 proteins that may contribute, in a different manner, to homologous recombination, and that they might replace ScRad51 in a hypothetical yeast protein complex inactivating different functions required for recombinational repair.

Details

show
hide
Language(s): eng - English
 Dates: 2002-02-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 27783
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Molecular Biology
  Alternative Title : JMB
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 316 (1) Sequence Number: - Start / End Page: 35 - 49 Identifier: -