Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  DNA sequence evolution with neighbor-dependent mutation

Arndt, P. F., Burge, C. B., & Hwa, T. (2003). DNA sequence evolution with neighbor-dependent mutation. Journal of Computational Biology, 10(3-4), 313-322. doi:10.1089/10665270360688039.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : J Comput Biol

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Arndt, Peter F.1, Autor           
Burge, Christopher B., Autor
Hwa, Terence, Autor
Affiliations:
1Evolutionary Genomics (Peter Arndt), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479638              

Inhalt

einblenden:
ausblenden:
Schlagwörter: DNA-sequence evolution; dinucleotide frequency; neighbor-dependent mutation; CpG-methylation-deamination
 Zusammenfassung: We introduce a model of DNA sequence evolution which can account for biases in mutation rates that depend on the identity of the neighboring bases. An analytic solution for this class of models is developed by adopting well-known methods of nonlinear dynamics. Results are presented for the CpG-methylation-deamination process, which dominates point substitutions in vertebrates. The dinucleotide frequencies generated by the model (using empirically obtained mutation rates) match the overall pattern observed in noncoding DNA. A web-based tool has been constructed to compute single- and dinucleotide frequencies for arbitrary neighbor-dependent mutation rates. Also provided is the backward procedure to infer the mutation rates using maximum likelihood analysis given the observed single- and dinucleotide frequencies. Reasonable estimates of the mutation rates can be obtained very efficiently, using generic noncoding DNA sequences as input, after masking out long homonucleotide subsequences. Our method is much more convenient and versatile to use than the traditional method of deducing mutation rates by counting mutation events in carefully chosen sequences. More generally, our approach provides a more realistic but still tractable description of noncoding genomic DNA and may be used as a null model for various sequence analysis applications.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2003-06
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 177265
DOI: 10.1089/10665270360688039
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Computational Biology
  Alternativer Titel : J Comput Biol
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 10 (3-4) Artikelnummer: - Start- / Endseite: 313 - 322 Identifikator: ISSN: 1066-5277