English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Bacterial protein microarrays for identification of new potential diagnostic markers for Neisseria meningitidis infections

Steller, S., Angenendt, P., Cahill, D. J., Heuberger, S., Lehrach, H., & Kreutzberger, J. (2005). Bacterial protein microarrays for identification of new potential diagnostic markers for Neisseria meningitidis infections. PROTEOMICS, 5(8), 2048-2055. doi:10.1002/pmic.200401097.

Item is

Files

show Files
hide Files
:
Steller et al. - Proteomics.pdf (Any fulltext), 477KB
Name:
Steller et al. - Proteomics.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Steller, Sigrid1, Author
Angenendt, Philipp2, Author           
Cahill, Dolores J., Author
Heuberger, Sigrid, Author
Lehrach, Hans2, Author           
Kreutzberger, Jürgen2, Author           
Affiliations:
1Max Planck Society, ou_persistent13              
2Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433550              

Content

show
hide
Free keywords: Opacity proteins; Pathogen; Phase variation; Protein chip; Vaccine
 Abstract: Neisseria meningitidis is the most common cause of meningitis and causes epidemic outbreaks. One trait of N. meningitidis, which is associated with most of the currently recognized virulence determinants, is the presence of phase-variable genes that are suspected to enhance its ability to cause an invasive disease. To detect the immune responses to phase-variable expressed proteins, we applied protein microarray technology for the screening of meningitis patient sera. We amplified all 102 known phase-variable genes from N. meningitidis serogroup B strain MC58 by polymerase chain reaction and subcloned them for expression in Escherichia coli. With this approach, we were able to express and purify 67 recombinant proteins representing 66% of the annotated genes. These were spotted robotically onto coated glass slides to generate protein microarrays, which were screened using 20 sera of patients suffering from meningitis, as well as healthy controls. From these screening experiments, 47 proteins emerged as immunogenic, exhibiting a variable degree of seroreactivity with some of the patient sera. Nine proteins elicited an immune response in more than three patients, with one of them, the phase-variable opacity protein OpaV (NMB0442), showing responses in 11 patient sera. This is the first time that protein microarray technology has been applied for the investigation of genetic phase variation in pathogens. The identification of disease-specific proteins is a significant target in biomedical research, as such proteins may have medical, diagnostic, and commercial potential as disease markers.

Details

show
hide
Language(s): eng - English
 Dates: 2005-04-25
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 275619
DOI: 10.1002/pmic.200401097
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PROTEOMICS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 5 (8) Sequence Number: - Start / End Page: 2048 - 2055 Identifier: ISSN: 1615-9853