Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress

Ralser, M., Wamelink, M. M., Kowald, A., Gerisch, B., Heeren, G., Struys, E. A., et al. (2007). Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. Journal of Biology, 6(4), 10-10. doi:10.1186/jbiol61.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : J Biol

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ralser, Markus1, Autor           
Wamelink, Mirjam M., Autor
Kowald, Axel2, Autor           
Gerisch, Birgit3, Autor           
Heeren, Gino, Autor
Struys, Eduard A., Autor
Klipp, Edda2, Autor           
Jakobs, Cornelis, Autor
Breitenbach, Michael, Autor
Lehrach, Hans1, Autor           
Krobitsch, Sylvia4, Autor           
Affiliations:
1Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433550              
2Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433554              
3Ribosomes, Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433558              
4Neurodegenerative Disorders (Sylvia Krobitsch), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479661              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Background Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role. Results We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased resistance to the thiol-oxidizing reagent diamide. Here we show that this phenotype is conserved in Caenorhabditis elegans and that the underlying mechanism is based on a redirection of the metabolic flux from glycolysis to the pentose phosphate pathway, altering the redox equilibrium of the cytoplasmic NADP(H) pool. Remarkably, another key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is known to be inactivated in response to various oxidant treatments, and we show that this provokes a similar redirection of the metabolic flux. Conclusion The naturally occurring inactivation of GAPDH functions as a metabolic switch for rerouting the carbohydrate flux to counteract oxidative stress. As a consequence, altering the homoeostasis of cytoplasmic metabolites is a fundamental mechanism for balancing the redox state of eukaryotic cells under stress conditions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2007
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 336973
DOI: 10.1186/jbiol61
URI: http://jbiol.com/content/pdf/jbiol61.pdf
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Biology
  Alternativer Titel : J Biol
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 6 (4) Artikelnummer: - Start- / Endseite: 10 - 10 Identifikator: ISSN: 1475-4924