English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing

Dohm, J. C., Lottaz, C., Borodina, T., & Himmelbauer, H. (2007). SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Research, 17(11), 1697-1706. doi:10.1101/gr.6435207.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Genome Res

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Dohm, Juliane C.1, Author           
Lottaz, Claudio2, Author
Borodina, Tatiana3, Author           
Himmelbauer, Heinz1, Author           
Affiliations:
1Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433550              
2Max Planck Society, ou_persistent13              
3Technology Development(Alexey Soldatov), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479657              

Content

show
hide
Free keywords: -
 Abstract: The latest revolution in the DNA sequencing field has been brought about by the development of automated sequencers that are capable of generating giga base pair data sets quickly and at low cost. Applications of such technologies seem to be limited to resequencing and transcript discovery, due to the shortness of the generated reads. In order to extend the fields of application to de novo sequencing, we developed the SHARCGS algorithm to assemble short-read (25–40-mer) data with high accuracy and speed. The efficiency of SHARCGS was tested on BAC inserts from three eukaryotic species, on two yeast chromosomes, and on two bacterial genomes (Haemophilus influenzae, Escherichia coli). We show that 30-mer-based BAC assemblies have N50 sizes >20 kbp for Drosophila and Arabidopsis and >4 kbp for human in simulations taking missing reads and wrong base calls into account. We assembled 949,974 contigs with length >50 bp, and only one single contig could not be aligned error-free against the reference sequences. We generated 36-mer reads for the genome of Helicobacter acinonychis on the Illumina 1G sequencing instrument and assembled 937 contigs covering 98% of the genome with an N50 size of 3.7 kbp. With the exception of five contigs that differ in 1–4 positions relative to the reference sequence, all contigs matched the genome error-free. Thus, SHARCGS is a suitable tool for fully exploiting novel sequencing technologies by assembling sequence contigs de novo with high confidence and by outperforming existing assembly algorithms in terms of speed and accuracy.

Details

show
hide
Language(s): eng - English
 Dates: 2007-11
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Genome Research
  Alternative Title : Genome Res
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 17 (11) Sequence Number: - Start / End Page: 1697 - 1706 Identifier: ISSN: 1088-9051