Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Residue contact-count potentials are as effective as residue-residue contact-type potentials for ranking protein decoys

Bolser, D. M., Filippis, I., Stehr, H., Duarte, J., & Lappe, M. (2008). Residue contact-count potentials are as effective as residue-residue contact-type potentials for ranking protein decoys. BMC Structural Biology, 8, 53-53. doi:10.1186/1472-6807-8-53.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : BMC Struct Biol

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1472-6807-8-53.pdf (beliebiger Volltext), 555KB
Name:
1472-6807-8-53.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: PUBLIC
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bolser, Dan M1, Autor
Filippis, Ioannis1, Autor
Stehr, Henning2, Autor           
Duarte, Jose2, Autor           
Lappe, Michael2, Autor           
Affiliations:
1Max Planck Society, ou_persistent13              
2Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433554              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: BACKGROUND: For over 30 years potentials of mean force have been used to evaluate the relative energy of protein structures. The most commonly used potentials define the energy of residue-residue interactions and are derived from the empirical analysis of the known protein structures. However, single-body residue 'environment' potentials, although widely used in protein structure analysis, have not been rigorously compared to these classical two-body residue-residue interaction potentials. Here we do not try to combine the two different types of residue interaction potential, but rather to assess their independent contribution to scoring protein structures. RESULTS: A data set of nearly three thousand monomers was used to compare pairwise residue-residue 'contact-type' propensities to single-body residue 'contact-count' propensities. Using a large and standard set of protein decoys we performed an in-depth comparison of these two types of residue interaction propensities. The scores derived from the contact-type and contact-count propensities were assessed using two different performance metrics and were compared using 90 different definitions of residue-residue contact. Our findings show that both types of score perform equally well on the task of discriminating between near-native protein decoys. However, in a statistical sense, the contact-count based scores were found to carry more information than the contact-type based scores. CONCLUSION: Our analysis has shown that the performance of either type of score is very similar on a range of different decoys. This similarity suggests a common underlying biophysical principle for both types of residue interaction propensity. However, several features of the contact-count based propensity suggests that it should be used in preference to the contact-type based propensity. Specifically, it has been shown that contact-counts can be predicted from sequence information alone. In addition, the use of a single-body term allows for efficient alignment strategies using dynamic programming, which is useful for fold recognition, for example. These facts, combined with the relative simplicity of the contact-count propensity, suggests that contact-counts should be studied in more detail in the future.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2008-12-08
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: BMC Structural Biology
  Alternativer Titel : BMC Struct Biol
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 8 Artikelnummer: - Start- / Endseite: 53 - 53 Identifikator: -