de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

 
 
 
 
DownloadE-Mail
  Quantifying the effect of sequence variation on regulatory interactions

Manke, T., Heinig, M., & Vingron, M. (2010). Quantifying the effect of sequence variation on regulatory interactions. Hum Mutation, 31(4), 477-483. doi:10.1002/humu.21209.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-7B78-A Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-7B79-8
Genre: Zeitschriftenartikel
Alternativer Titel : Hum Mutat

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Manke.pdf (beliebiger Volltext), 304KB
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: PUBLIC
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Manke, T.1, Autor              
Heinig, M.1, Autor              
Vingron, M.2, Autor              
Affiliations:
1Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, escidoc:1433547              
2Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, escidoc:1479639              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Base Sequence; Computational Biology/methods; Gene Regulatory Networks/genetics; Humans; Molecular Sequence Data; Mutation/genetics; Polymorphism, Single Nucleotide/genetics; Protein Binding; Transcription Factors/metabolism
 Zusammenfassung: The increasing amount of sequence data provides new opportunities and challenges to derive mechanistic models that can link sequence variations to phenotypic diversity. Here we introduce a new computational framework to suggest possible consequences of sequence variations on regulatory networks. Our method, called sTRAP (strap.molgen.mpg.de), analyses variations in the DNA sequence and predicts quantitative changes to the binding strength of any transcription factor for which there is a binding model. We have tested the method against a set of known associations between SNPs and their regulatory consequences. Our predictions are robust with respect to different parameters and model assumptions. Importantly we set an objective and quantifiable benchmark against which future improvements can be compared. Given the good performance of our method, we developed a publicly available tool that can serve as an important starting point for routine analysis of disease-associated sequence regions.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2010-04
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Hum Mutation
  Alternativer Titel : Hum Mutat
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 31 (4) Artikelnummer: - Start- / Endseite: 477 - 483 Identifikator: ISSN: 1098-1004 (Electronic) 1059-7794 (Linking) %R 10.1002/humu.21209