English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  GOing Bayesian: model-based gene set analysis of genome-scale data.

Bauer, S., Gagneur, J., & Robinson, P. N. (2010). GOing Bayesian: model-based gene set analysis of genome-scale data. Nucleic Acids Research, 38(11), 3523-3532. doi:10.1093/nar/gkq045.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Nucleic Acids Res

Files

show Files
hide Files
:
3523.full.pdf (Any fulltext), 2MB
Name:
3523.full.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Bauer, S., Author
Gagneur, J., Author
Robinson, P. N.1, Author           
Affiliations:
1Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433557              

Content

show
hide
Free keywords: Algorithms; Animals; Bayes Theorem; Computer Simulation; Drosophila melanogaster/genetics; *Genes; Genes, Fungal; Genes, Insect; Genomics/*methods; *Models, Genetic; Saccharomyces/genetics/growth & development/metabolism
 Abstract: The interpretation of data-driven experiments in genomics often involves a search for biological categories that are enriched for the responder genes identified by the experiments. However, knowledge bases such as the Gene Ontology (GO) contain hundreds or thousands of categories with very high overlap between categories. Thus, enrichment analysis performed on one category at a time frequently returns large numbers of correlated categories, leaving the choice of the most relevant ones to the user's; interpretation. Here we present model-based gene set analysis (MGSA) that analyzes all categories at once by embedding them in a Bayesian network, in which gene response is modeled as a function of the activation of biological categories. Probabilistic inference is used to identify the active categories. The Bayesian modeling approach naturally takes category overlap into account and avoids the need for multiple testing corrections met in single-category enrichment analysis. On simulated data, MGSA identifies active categories with up to 95% precision at a recall of 20% for moderate settings of noise, leading to a 10-fold precision improvement over single-category statistical enrichment analysis. Application to a gene expression data set in yeast demonstrates that the method provides high-level, summarized views of core biological processes and correctly eliminates confounding associations.

Details

show
hide
Language(s): eng - English
 Dates: 2010-06-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nucleic Acids Research
  Alternative Title : Nucleic Acids Res
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 38 (11) Sequence Number: - Start / End Page: 3523 - 3532 Identifier: ISSN: 0305-1048